Sustainable Earthworks – Mass Haul Analysis

John O'Connor Arup

TII National Roads and Greenways Conference 22nd September 2022

Sustainable Earthworks

Background

Ongoing research to identify opportunities for greater consideration of earthworks factors which influence sustainability, with a particular focus on Phase 2 and Phase 3.

Purpose

A well-considered Mass Haul analysis during option selection, planning and design can help mitigate ground risks, reduce potential waste, and reduce the need for reactive and less sustainable engineering solutions at subsequent project phases.

Objective

Identify the main principles that influence Mass Haul and develop a tool which would facilitate Mass-Haul analysis at Phase 2 and Phase 3

What is Mass Haul in this context?

Basic Definition:

Volume of Material x Transport Distance

Accurate mass haul is also influenced by the following:

- material classification
- material acceptability
- material value
- source and destination of material
- material handling and construction practices
- haulage constraints
- haulage / extraction equipment
- programme

What is a Mass Haul Diagram?

A Mass Haul Diagram is a graphical representation of the material moved and facilitate investigation of material allocation and optimised haulage

What are the benefits of Mass Haul as part of Phase 2 & Phase 3?

Phase 2 Option Selection Process

- More *considered comparison* of options in terms of earthworks
- Optimised earthworks design when options at their *most flexible*
- Facilitate *identification of deposition and/or borrow areas* much earlier in the process
- Increased likelihood of achieving a *more balanced* (earthworks) preferred option

Phase 3 Planning Design

- **Reduced risk of unforeseen ground conditions** which result in expensive, time-consuming and disruptive engineering solutions
- Allocation and re-use of material at its *highest value*
- **Reduces reactive design** to deal with unbalanced preferred option

Phase 5 & Phase 6

- Greater cost certainty in terms of earthworks quantities and movement

Phase 4 Statutory Process

- Quantitative and qualitative assessment of factors which influence sustainability (from concept stage)
- Shows *stronger link* between option selection process, sustainability and land required
- Evidence to support land acquisition, particularly in terms of borrow areas and material deposition areas

• Optimised earthworks considerations will likely result in *less reliance on natural / scarce resources* • Localised balances which reduce works and cost associated with long or unsustainable haulage • **Reduction in claim costs and programme overrun** due to improved consideration of material movements and allocation e.g. sourcing acceptable material, disposal of unacceptable material

How can Mass Haul be incorporated?

Original Objective Create a mass haul diagram spreadsheet

Project Phase	Scope (based on)	Geometry & Volumes	Earthworks Analysis	Project Characteristics	Visualisation	Conclusions & Opportunities	
Phase 2	Geological Description (e.g. Overburden, Rock)	 Geometry: Chainage/Stations Alignment Levels 	 Volumes: Out (Bulked) 	 Constraints Material Deposition 	 Overall Mass Haul Diagram Mass Haul Diagram 	 Earthworks Bala Haulage Gradier Haulage Distance 	
Phase 3	TII Material Classification (e.g. Class 1, Class 2, Class 6N etc.)	 Ground Levels Volumes: Cut (Unbulked) Fill (Compacted) 	 Fill (Uncompacted) Reusability Analysis Material Analysis 	Areas Borrow Areas	per Material Type (as per Phase & Scope)	 Haulage Distance (freehaul vs overhaul) Haulage Constra 	

Identification of possible optimisation options

Evolved Objective

Create a tool which directs and highlights opportunities for a more sustainable design through optimisation with respects to earthworks

		Geometry & Volumes			Visualisation	Conclusions & Opportunities	
Phase 2	Geological Description (e.g. Overburden, Rock)	 Geometry: Chainage/Stations Alignment Levels 	 Volumes: O Cut (Bulked) 	 Constraints Material Deposition 	 Overall Mass Haul Diagram Mass Haul Diagram 	 Earthworks Bala Haulage Gradie 	
Phase 3	TII Material Classification (e.g. Class 1, Class 2, Class 6N etc.)	 Ground Levels Volumes: Cut (Unbulked) Fill (Compacted) 	 Fill (Uncompacted) Reusability Analysis Material Analysis 	 Areas Borrow Areas 	 Mass Haur Diagram per Material Type (as per Phase & Scope) 	 Haulage Distant (freehaul vs overhaul) Haulage Construct 	

Bonneagar lompair Éireann Transport Infrastructure Ireland

Mass Haul Diagrams –

- Overall
- Detailed per material type or classification
- Automatically updated based on inclusion of material deposition areas and/or borrow areas

Haulage Analysis Summary –

• Earthworks balance as total and according to material designation

Ha

- Haulage summary per material designation:
 - Haulage volume in terms of freehaul \bigcirc and overhaul
 - Haulage distance in terms of freehaul \bigcirc and overhaul
 - Volume and total distance for uphill \bigcirc movements
- Haulage summary per earthworks area per material type, highlighting following impacts:
 - Gradient (uphill) Ο
 - Constraints Ο

- Distance (over freehaul) \bigcirc
- Two iterations of movements, both in \bigcirc forward and backward direction

			Topsoil General Fill		1	Selected Fill Capping		ng Subbase				Total							
Haulage Deficit (m³)		Deficit (m ³) 26,700)		72,563		236,044			155,085		85 118,		3,607			ireani	
laula		rplus (m ³																	
Tot					Т	opsoil	opsoil		eneral Fil		S	Selected Fill		Capping		g	Subbase		
	Haulage		0	verall	-	31,584			242,493 51,829			119,869		9	50,843				
			Fre	ehaul	25,819			184,966			49,66	6		102,75	50		48,4	499	
Volume		ne (m´) –	Ove	erhaul	5,766		3%	57,526			2,163	3		17,11	9		2,3	44	
					£	17.020			10.420			_15_/05_							
	Hau											Τομ	osoil						
	Distan		Chainage			FORWARD I			MOVEMENT			BACKWAR			BACKWARD	D MOVEMENT			
		From	То		Gradient	Constraints	Volume	Distance	Gradient	Constraints	Volume	Distance	Gradient	Constraints	Volume	Distance	Gradient	Constraints	Volume
		-190	50	CUT	0.27%	YES	164	320	0.55%	YES	1381	1820							
	нац	50	450	FILL															
	Gra	450	700	CUT	0.63%	NO	23	1175											
	(700	2800	FILL															
	L,	2800	3200	CUT	-0.72%	NO	462	525					-0.74%	NO	462	1250			
	ļ	3200	3850	FILL															
		3850	4200	CUT	0.04%	YES	541	500					0.86%	NO	541	500			
	ł	4200	4850	FILL	0.000	110	470	150					0.070/	1000	470	150			
	l I	4850	5100	CUT	0.23%	NO	1/2	450					0.07%	YES	1/2	450			
	Ì	5100	5/50		0.48%	VES	5262	075					-0.50%	NO	1/09	775	-0.20%	VES	3800
	ļ	6650	7700	FILI	0.4076	11.5	5205	575					-0.30%	NO	1430	115	-0.25%	11.5	2033
		7700	7800	CUT	1.84%	NO	36	200					-0.65%	YES	36	575			
	ł	7800	8100	FILL	2.0170			200					0.0070	. 20	55	515			
	l	8100	8400	CUT	0.18%	NO	1626	450					-1.22%	NO	832	300			
	I	8400	9000	FILL															
		9000	9200	CUT	0.25%	NO	695	650					0.10%	NO	695	400			

		Geometry & Volumes				Conclusions 8 Opportunities
Phase 2	Geological Description (e.g. Overburden, Rock)	 Geometry: Chainage/Stations Alignment Levels 	 Volumes: O Cut (Bulked) 	 Constraints Material Deposition 	 Overall Mass Haul Diagram Mass Haul Diagram 	 Earthworks Bala Haulage Gradier Haulage Distance
Phase 3	TII Material Classification (e.g. Class 1, Class 2, Class 6N etc.)	 Ground Levels Volumes: Cut (Unbulked) Fill (Compacted) 	 Fill (Uncompacted) Reusability Analysis Material Analysis 	 Material Deposition Areas Borrow Areas 	 Mass Haur Diagram per Material Type (as per Phase & Scope) 	 Haulage Distance (freehaul vs overhaul) Haulage Constra

								<u>т</u>		
General Fill		ill	Selected Fill	Ca	apping	Subbase		Total		
	72,563		236,044	1	55,085	118,607			ireann ire Irelar	
Topsoil		Gener	ral Fill	Select	Selected Fill		oing	Subbase		
31,584		242,	242,493		51,829		869	50,8	843	
19		184,966		49,666		102,750		48,499		
66		57,526		2,163		17,119		2,344		

Current Tools

Excel-Based Earthwork Analysis Tools with User Manual

Pilot Trials on live Phase 2 and Phase 3 Projects

Ongoing

Update Tools and User Guide with feedback from project teams

Next Steps

- 1st November 2022 Available for use on projects
- Technical support and guidance available to project teams
- Feedback and suggestions for further development welcome
- Regular updates of Tools and User Guide based on user experience and feedback

Questions and Answers

