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Executive Summary 

This report sets out the final methods, findings, outputs and conclusions for the project: 
‘TII268 Lot1 Collision Prediction Model for the Irish National Road Network’. The aim of the 
project was to develop Accident Predictive Models (APMs) using pre-existing data for TII’s 
road network. APMs relate crash numbers to physical road features and exposure (traffic) 
data. Regression techniques were used to provide quantitative estimates of the impact of 
these road characteristics on safety. Although the relationships developed are not strictly 
causal, this approach is a well-established and practical way to understand how road 
features perform with respect to safety in the field, locally. Practitioners can use the 
developed safety effectiveness estimates (or Crash Modification Factors (CMFs)) to assist 
them to identify the most appropriate road designs in given circumstances. These can also 
be used in economic appraisal for road design upgrades over the long term; this again 
assists decision making and improves transparency. 

Phase 1 

The Phase 1 client report (Chowdhury, et al., 2022) gave details of the preparatory review 
phases of the project: this assessed the quality of available data and reviewed potential 
statistical approaches. It was acknowledged that using existing data rather than undertaking 
bespoke, targeted data collection is challenging. Also, as a small country with generally low 
traffic flows, Ireland has a relatively low density of road collisions. However, this does not 
mean the network is low risk or safe. Small sample numbers of crashes per modelled road 
section also pose difficulties for the statistical methods used to develop the APMs.  

Phase 2 Modelling 

The road was segmented into homogeneous sections and the crash occurrence was 
modelled using information on the road features across these sections. Roads were 
sectioned on the basis of consistent flow, bendiness and number of lanes, in line with the 
recommendations from the Phase 1 findings. In Phase 2, threshold values for these features 
were chosen to reduce the number of sections with zero crash count. All crash severities 
(including damage crashes) were included to maximise the crash count per modelled 
section. 

A range of modelling approaches were tested to identify the approach that gave the best 
models. The zero-inflated approach, using a Negative binomial distribution, was found to 
produce the best fit between crashes and explanatory variables. This approach is specifically 
applied when there are a high proportion of modelled sections with zero crash counts. 
Models for each road type were obtained, the fit was best on the motorways (where flows 
and crash density were highest). 

Practical models results 

Some of the key findings from the models were: 

• Reducing the number, or improving the safety of, minor junctions and access points 
onto the network could reduce collision risk.  

• On dual carriageways, increasing the proportion of median barriers decreases the 
risk on a segment. 
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• It is important to ensure the skid resistance (CSC %) meets the defined minimum 
thresholds on single and legacy roads. 

• The geometry of the road influences collision risk: gradient and radius were common 
significant predictors of collision risk across all models.  

Tool planning  

This work was conducted to provide local (Irish) estimates of the safety performance of road 
features. The model outputs were fed into a tool to support engineering safety practitioners 
to select effective infrastructure interventions (see Figure 1 below). 

Practitioners were asked to complete a survey to understand their needs for the tool. 
Following this, two workshops were undertaken to capture the detailed needs and 
challenges that road safety staff currently face. Amongst the findings were that: 

• Ways to avoid double counting crash savings of measures when used in combination 
were needed.  

• First Year Rate of Return was the preferred economic appraisal approach. 

• Other specific engineering countermeasures (those not modelled) needed to be 
available in the tool and their effectiveness should be obtained from the 
‘Clearinghouse’ source; this should be limited to the best quality study findings. 

These and other captured aspects were then fed into the tool design as shown in Figure 1. 
The tool was developed in MS Excel and can be downloaded from the TII website.  

 

 

Figure 1: Summary of the process flow for the Collision Reduction Calculator 

 

Future modelling recommendations 

Data was not available for some important explanatory variables in the modelling. As a 
result, the coefficients presented in this report should be treated as indicative and the 
models should be updated as new data sources are available. Relating to this issue, 
availability of the following data types would benefit the model fit and robustness: 
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1. Robust data on traffic speeds. 

2. Flow data by road user type (e.g. motorcycles, pedestrians, pedal cycles). 

3. Presence of rumble strips, street lighting, pedestrian crossing facilities and cycle 
facilities. 

4. Separate junction models should be developed; this would require substantially 
more detailed data to be collected.  

5. Accurate assignment of collisions to individual carriageways and specific roads (e.g. 
where one road crosses over the top of another) would also improve the quality of 
the data.  

Future potential improvements to the tool 

The project identified that the tool could be extended and improved by the following 
changes:  

• Countermeasure effectiveness broken down by the different collision sub-types 
targeted by the specific measure.  

• The user could be permitted to specify the amount of overlap between 
countermeasures - to give more accurate combined reductions that account for the 
potential double counting of benefits.  

• Links to other data sources for benefit estimations, beyond the Clearinghouse, could 
be beneficial. 

• Countermeasures could be categorised in the tool by relevance or applicability to 
Irish roads. 
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1 Purpose of this project 

The aim of this work was to develop Ireland’s first Accident Prediction Model (APM) and to 
use this to provide Irish Crash Modification Factors (CMFs). These locally derived CMFs are 
to benefit road safety practitioners at Transport Infrastructure Ireland (TII) and local 
authorities as they quantify the effective road safety interventions. They are used to identify 
the measures which will be most appropriate to reduce road traffic collisions and casualties. 
CMFs are also important for the economic appraisal of countermeasures. These can 
therefore help staff to programme targeted, cost-effective and proactive interventions. 

The project investigated: 

• The extent to which APMs can feasibly be developed from available Irish data 
sources. 

• How the APMs developed and CMFs from other sources can be used to develop a 
decision tool for practitioners to provide effective information to inform road safety 
decisions into the future. 

There were six tasks to address these aims:  

 

 

The findings, conclusions and recommendations from the first three tasks are documented 
in the interim report (Chowdhury, et al., 2022). This report assessed the feasibility of 
developing robust APMs for the Irish national road network. It made recommendations on 
the best approach based on the methodological review findings and the availability and 
quality of data. 

This report covers the findings from the last three tasks. Section 2 presents and overview of 
the model development including the data used, road segmentation approach, modelling 
methodology and results. It also makes some recommendations which should improve 
future modelling. Section 3 details the planning process for the tool (Collision Reduction 
Calculator), which involved a survey of, and workshops with, Road Safety Engineers to 
understand their needs. Section 4 details the process flow for the calculator, the Irish CMFs 
included and makes some suggestions for future improvements to the calculator.  

The calculator is available to download from the TII Publications website: 
https://www.tiipublications.ie/.  

https://www.tiipublications.ie/
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2 Model development 

2.1 Overview of methodological approach 

As outlined in the interim report (Chowdhury, et al., 2022), the APMs were developed using 
statistical models with a negative binomial distribution, as this was assessed as the most 
appropriate for the response variable (number of collisions (including damage only 
collisions) on each section).  

Four separate APMs were developed covering the following road types (see Figure 2): 

• Mainline: motorway. 

• Mainline: dual carriageway. 

• Non-legacy road mainline: single carriageway. 

• Legacy roads (subnet 3 and 4). 

For each road type, the network was first segmented into homogenous sections (see Section 
2.2) and then the APMs developed using these segments (see Section 2.3). 

Note that roundabouts, link roads and ramps have been excluded from the modelling as 
these combined accounted for less than 5% of the network length and 10% of collisions. The 
number of major and minor junctions was identified for each mainline segment but, due to 
data availability, it has not been possible to model the risk at specific junctions separately 
from the mainline.  

 

Figure 2: Road Types 
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2.2 Segmenting the network 

This Section describes the process of segmenting the network for modelling across the four 
different road types. Section 2.2.1 outlines the data sources used; Section 2.2.2 outlines the 
method and results of the segmentation. 

2.2.1 Data sources 

As set out in the interim report (Chowdhury, et al., 2022), it was intended that the TII GIS 
base data would be used as the reference layer to link other datasets. However, after 
extensive further investigation, some issues were identified with these data (namely with 
the junction counts/types and some small discrepancies in the road type). As a result, a base 
layer was created in two steps: 

1. The PRIME2 Q1 2020 database (chosen to align to the end of the collision data 
period) was used to classify the network into motorway/dual/single. 

2. This classification was combined with the TII GIS base layer data to distinguish the 
single carriageway into single (non-legacy) and legacy networks. This also ensured 
that only National roads were included in the modelling. 

Segments were created for each of the road types according to variation in radius 
(curvature), traffic flow (AADT – Average Annual Daily Traffic) and number of lanes. Where 
sufficiently large changes in these parameters occur, boundary points between segments 
were created. 

The radius variable in the Pavement Management Survey (PMS) data was used for the 
motorway and dual carriageway segmentation. For single carriageway and legacy roads, an 
alternative method was used to generate radius values for segmenting, as the PMS data was 
not sufficiently accurate. The road network was split into 250m sections and radius values 
were calculated for each section using the GPS co-ordinates A, B and C - the start, end, and 
midpoint of each section (see Figure 3). A standard mathematical formula gives the radius of 
the circle containing these 3 points – which is assigned to point C. Other section lengths 
were tested, such as 100m and 500m, but these resulted in less suitable segments for 
modelling.  

 

Figure 3: Alternative method for calculating radius values on the road network 
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Adjustments were needed to the calculated radius values for single and legacy roads to 
ensure these were similar in scale to those from the PMS survey data. This involved scaling 
the calculated values and applying a maximum value (since very straight roads would have 
an infinite radius in this calculation). This means that the radius values for motorways and 
dual carriageways are not directly comparable to those for single and legacy roads. There 
may therefore be some differences in the model coefficients for this variable across road 
types. 

The AADT variable was taken from the 2015 to 2019 traffic data – averaging across the five 
years to match the collision period. The AADT for light vehicles and heavy vehicles were 
summed for each section to give an overall AADT for segmenting. The ‘number of lanes’ 
variable was taken from the traffic data. Some 3-lane sections of the network were 
incorrectly labelled as 2-lane, so manual adjustments were made to improve the accuracy of 
this dataset before segmenting. 

Table 1 summarises the variables and source of these data for the segmentation. 

 

Table 1: Variables used to segment the network 

Variable Data source 

Traffic flow (AADT) Traffic data from 2015 to 2019 

Radius (curvature) PMS survey data - motorways and dual carriageways 

Alternative method - single carriageways and legacy roads 

Number of lanes Traffic data with manual corrections 

 

Once the segments were created, data from other sources were linked to each of these; the 
initial list of variables was taken to be those identified in the phase 1 report (Table 12 
(Chowdhury, et al., 2022)). Additional variables have also since been incorporated, and 
improvements made to some: 

• Width of the hard shoulder and median (motorways only) – measurements at the 
1km level were obtained using Google Earth imagery, averaged across each segment 
and then categorised as in Table 8. 

• Road hazard (risk rating) data – data provided by TII classifying the risk at different 
points on the network as ‘high’, ‘medium’ or ‘low’ was considered for inclusion.  

• Location of 2+1 and 1+1 roads – a yes/no marker for each of these road types in the 
data. Each segment is entirely 2+1 or 1+1, or neither. The 2+1 and 1+1 segments 
were included in the single carriageway dataset for comparison with other 2 and 3-
lane segments. 

• Presence of a verge barrier (motorways and dual carriageways) and median barrier 
(dual carriageways only) - whilst these data are collected in the Vehicle Restraint 
System (VRS) dataset, further examination showed that there were substantial 
amounts of missing data. In locations where there were no barriers recorded, a 
manual inspection of Google Earth imagery was used at 1km intervals to supplement 
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the information from the VRS dataset and calculate the approximate percentage of 
the segment with these barriers present.  

• For minor junctions (T, X junctions and roundabouts), the counts produced by the TII 
base dataset were replaced with junction counts from the PRIME 2 data, as this were 
identified to be more accurate. When buffering (combining) the GIS layers, rounded 
ends were used to capture roundabouts and other junctions at the ends of 
segments.  

• For major junctions, off ramp start points and on ramp end points in the PRIME 2 
data were used to count the number of slip roads on each segment. If there was an 
on and an off slip within a segment (which is likely as carriageways are combined), 
this will count as two major junctions.  

The full list of variables included in the modelling is documented in Table 8. 

2.2.2 Method and results 

In more detail, the segmentation used the following approach:  

1. For each of the four road types, the base network was divided into 10m points, and 
each point assigned the nearest two-way AADT and radius of curvature. 

2. Segments were identified using a combination of AADT, radius of curvature and 
changes in the number of lanes. Potential locations for segment division were 
identified by: 

a. identifying differences in AADT between adjacent points that were over a 
threshold.  

b. identifying points at which the number of lanes changed. 

c. radius of curvature lines were created by highlighting all points deemed to be 
curved (i.e. those over a certain threshold), merging the curved points into a 
line and then obtaining the ends of these lines. 

3. The thresholds for each of the three parameters were set depending on the type of 
network, for example, Motorway network used an AADT difference of 5,000 while 
single carriageway networks used 1,000. See Table 2 for a full list of thresholds. 

 

Table 2: Segmentation parameter Thresholds 

Network Type AADT Radius of 
Curvature (km) 

Lane Change Max Length 
(km) 

Motorway 5,000 3 1 5 

Dual Carriageway 5,000 3 1 5 

Single Carriageway 1,000 5 1 5 

Legacy Road 1,000 5 1 5 
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4. A minimum segment length was applied and any identified segments less than 200m 
were combined with adjacent sections.  

5. Any segments above the set maximum length threshold were divided into smaller 
sections of equal length (i.e. a segment of 7km was divided into two segments of 
3.5km). 

6. A validation process was used to fine tune the thresholds, ensuring that the 
distribution of collisions and segments lengths was appropriate for modelling (e.g. 
minimising the number of segments with zero collisions).  

7. Once the segments were created, the other data sources were linked to these 
segments (using a buffer of 50m to capture all relevant data). The variables for the 
modelling (see  Table 8) were then calculated. For example, this involved: 

a. Calculating a mean of the 10m AADT values. 

b. Counting the number of junctions in order to calculate a junction density. 

c. Identifying the minimum (tightest) radius on the segment. 

d. Combining continuous scale responses into categorical responses (e.g. 
median width). 

8. Any segments with missing data for the variables of interest were removed prior to 
modelling.  

2.2.2.1 Motorway network 

Table 3 outlines the mean, median, minimum and maximum values for the 371 motorway 
segments. Of these segments, 25 (7%) had zero collisions.  

 

Table 3: Properties of the motorway segmentation 

Variable of interest Mean Median Min Max 
Categorical 

variable counts 

AADT 14,233 8,854 3,644 72,066  

Segment length (km) 2.6 2.1 0.2 5.0  

Collisions per segment 14.7 10 0 234  

Gradient 1.3 1.2 0.2 5.3  

Crossfall 1.6 1.5 1.0 3.1  

Radius 0.9 0.8 0.04 4.0  

CSC % (skid resistance) 97% 100% 26% 100%  

Urban/rural (categorical) - - - - 299 rural  
12 urban 
60 mixed 

HGV % 11% 11% 3% 52%  
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Variable of interest Mean Median Min Max 
Categorical 

variable counts 

Minor junction density (per 
km) 

0.2 0 0 4.2 
 

Major junction density (per 
km) 

1.3 0.4 0 15.9 
 

Hard shoulder width 
(categorical) 

- - - - 248 relaxation 
128 wide 

Median width (categorical) - - - - 11 narrow 
187 standard 
173 wide 

M50 flag (categorical) - - - - 330 no 
41 yes 

Verge barrier % 25% 0% 0% 100%  

2.2.2.2 Dual carriageway network 

Table 4 outlines the mean, median, minimum and maximum values for the 190 dual 
carriageway segments. Of these segments, 10 (5%) had zero collisions.  

 

Table 4: Properties of the dual carriageway segmentation 

Variable of interest Mean Median Min Max 
Categorical 

variable 
counts 

AADT 17,171 13,110 2,000 50,051  

Segment length (km) 1.4 0.9 0.2 5.0  

Collisions per segment 23.8 12.5 0 230  

Gradient 1.8 1.3 0.3 4.7  

Crossfall 1.7 1.6 1.0 3.2  

Radius 0.5 0.5 0 4.3  

CSC % (skid resistance) 82% 93% 5% 100%  

Urban/rural (categorical) - - - - 135 rural  
50 urban 
5 mixed 

HGV % 7% 6% 1% 22%  

Minor junction density (per km) 2.5 0.6 0 37.1  

Major junction density (per km) 1.2 0 0 13.5  
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Variable of interest Mean Median Min Max 
Categorical 

variable 
counts 

Verge barrier % 18% 0% 0% 100%  

Median barrier % 82% 100% 0% 100%  

Access Business density (per km) 1.3 0 0 102.5  

Access Commercial density (per km) 2.1 0 0 78.8  

Access Residential density (per km) 15.5 0.8 0 305.9  

2.2.2.3 Single carriageway network 

Table 5 outlines the mean, median, minimum and maximum values for the 2,234 single 
carriageway segments. Of these segments, 329 (15%) had zero collisions.  

 

Table 5: Properties of the single carriageway segmentation 

Variable of interest Mean Median Min Max 
Categorical 

variable 
counts 

AADT 4,389 4,040 278 14,038  

Segment length (km) 0.9 0.6 0.2 5.0  

Collisions per segment 8.2 4.0 0 220  

Gradient 1.8 1.6 0.2 7.4  

Crossfall 1.6 1.6 0.3 3.7  

Radius 1.6 0.9 0.02 10  

CSC % (skid resistance) 53% 54% 0% 100%  

Urban/rural (categorical) - - - - 1,750 rural  
409 urban 
75 mixed 

HGV % 9% 8% 1% 51%  

Minor junction density (per km) 2.9 2.0 0 28.0  

Major junction density (per km) 0.01 0 0 11.6  

Access Business density (per km) 2.3 0 0 360.7  

Access Commercial density (per km) 3.1 0 0 281.7  

Access Residential density (per km) 12.0 3.4 0 289.0  

2+1 or 1+1 flag (categorical)     55 Yes 
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2.2.2.4 Legacy road network 

Table 6 outlines the mean, median, minimum and maximum values for the 1,703 legacy 
segments. Of these segments, 319 (19%) had zero collisions.  

 

Table 6: Properties of the legacy network segmentation 

Variable of interest Mean Median Min Max 
Categorical 

variable 
counts 

AADT 1,965 1,886 195 6,702  

Segment length (km) 1.2 0.7 0.2 5.0  

Collisions per segment 5.5 3.0 0 116  

Gradient 2.6 2.4 0.2 8.8  

Crossfall 1.6 1.6 0.4 4.1  

Radius 1.2 0.6 0.04 10  

CSC % (skid resistance) 71% 84% 0% 100%  

Urban/rural (categorical) - - - - 1,453 rural  
233 urban 
17 mixed 

HGV % 9% 8% 0% 31%  

Minor junction density (per km) 2.7 2.0 0 20.6  

Major junction density (per km) 0 0 0 0  

Access Business density (per km) 2.7 0.3 0 208.6  

Access Commercial density (per km) 2.9 0 0 268.7  

Access Residential density (per km) 10.6 4.0 0 314.1  

2.3 APM development 

The modelling process described below is based on the methodology proposed in the 
interim report (Chowdhury, et al., 2022).  

Since the number of collisions on some sections is zero, both Generalised Linear Models 
(GLMs) and zero-inflated models were tested on the data. In all cases, the zero-inflated 
models were found to fit the data substantially better, resulting in improved prediction 
estimates. Zero-inflated models consist of a two-stage modelling process: 

1. A binomial logit model to model whether the observation is zero or not. This model 
represents the “structural/excessive zeros” – these are observations which are 
always zero.  
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2. A Negative Binomial or Poisson model to model the non-zero count data. Within this 
model, “sampling zeros” are modelled for those observations which are exposed to 
the risk but do not report experience of the outcome during the study.  

In the context of collision data, the first modelling process can be thought of as modelling 
the segments with such low collision risk (e.g. with low exposure or few risky factors being 
present) that you will only get zero collision counts on these. The second models the 
segments with non-zero collision risk. These are sections where collisions are likely to occur, 
however some of these segments will not have a collision(s) reported during the sampling 
period. Note that in these models, an additional coefficient called theta (θ) is also calculated 
alongside the coefficients for the variables of interest.  

For each road type, the first step is to determine the simple base model. This was developed 
using two of the segmentation variables. These were AADT and segment length. These 
variables are known from the literature to be the parameters that (almost always) account 
for the greatest variability in collision occurrence in these GLMs (Table 7). The number of 
lanes was not included as a variable in the base model as it was highly correlated with AADT. 
This meant that when it was tested for inclusion in this model, number of lanes was not a 
significant predictor of collisions. 

 

Table 7: Variables included in the base model (all models) 

Models Variable Description 

ALL AADT Average AADT 

ALL Segment length Length of segment in kilometres 

 

Previous models developed by others (see Chowdhury et. al,  (2022) for details) have 
included these variables in the model as either the power or exponential form. These 
models were compared to each other using their Akaike Information Criterion (AIC)1 scores 
to determine which form generated a better fit for these data. The models were also used 
to predict the number of collisions if the value of the variable was zero. This served as a 
logic check since a segment with a flow of zero should be predicted to have zero collisions. 
The form of the variable was chosen based on the results of the AIC score comparison and 
the logic check; results for each of the different road types are summarised in Sections 2.3.1 
to 2.3.4 below.  

Both Poisson and Negative Binomial zero-inflated base models were created. These models 
were compared to each other using a likelihood ratio test2 to determine which type was 
better suited for the data. For all four road types, negative binomial models were 
determined to be the best fit. 

 

1 The AIC is a statistical method used to assess the goodness of fit of a model. It allows comparison of models 

to determine which one best explains the data.  

2 The likelihood ratio test assesses the goodness of fit of two competing models. 
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For zero-inflated models, different predictor variables can be used for each of the two 
stages in the modelling. For the first part of the modelling (the logit model), AADT was the 
only predictor included. Whilst this variable was not significant in all of the road type 
models, it makes logical sense that as the AADT increases, the probability of no collisions on 
a segment decreases. This is supported by the direction of the sign (negative) for the 
coefficient in each of the four models. Segment length was also considered for inclusion 
here, to align to the base model variables, but due to the way the segmentation exercise 
was completed, many of the short network segments contain junctions, where we would 
expect the collision risk to be higher. 

In the text that follows, the process to decide which variables should be used in the final 
model relate to the second stage of the modelling (the negative binomial model) – this is 
the main output of interest (and the coefficients for these variables are presented in 
Sections 2.3.1 to 2.3.4). These final models were developed from the base models by testing 
a number of variables for inclusion in the model and deciding which of these best explain 
the collision counts. All the possible variables that were assessed are shown in Table 8. 
There were some variables listed in the Interim report (Chowdhury, et al., 2022) which were 
ruled out of the modelling process following further investigation; these are detailed in 
Appendix A. 

 

Table 8: Variables tested for inclusion in the models 

Models Variable Description 

All Gradient Maximum absolute gradient over segment 

All Crossfall Mean crossfall over segment 

All Radius Minimum radius on segment 

All CSC % Percentage of the segment where Characteristic 
SCRIM Coefficient (CSC) values are over threshold. The 
SCRIM coefficient measures the skid resistance of the 
network; minimum thresholds are defined for each 
road type. 

All Urban/Rural Classification into Rural, Urban, and Mixed 

All HGV % Percentage of vehicles that are Heavy Goods Vehicles 
(HGVs) 

All Minor junctions  Minor junction density (number of minor junctions3 
per kilometre)  

 

3 This includes T-junctions, crossroads, and roundabouts.  
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Models Variable Description 

Motorway, 
dual, single4 

Major junctions Major junction density (number of major junctions5 
per kilometre) 

Motorway, 
dual, single4 

Junctions Overall junction density (minor + major junctions per 
kilometre) 

Motorway Hard shoulder width For each carriageway the hard shoulder width is 
classified into: Narrow (<1m), Relaxation (1m-2.49m), 
Wide (≥2.5m). The minimum of these categories was 
selected for each segment. 

Motorway Median width The median width is categorised into: Narrow 
(<2.49m), Standard (2.5m-4.79m), Wide (≥4.8m) 

Motorway M50 flag Flags segments which are on the M50 (this was 
identified as a potential outlier by TII) 

Motorway, 
dual 

Verge barrier % Percentage of the segment with a verge barrier on the 
nearside. Note: as segments contain both 
carriageways, if only one side of the carriageway has a 
verge barrier, this would be recorded as 50%. 

Dual Median barrier % Percentage of the segment with a median barrier 
recorded. Note: this variable was not used for the 
motorway model as by definition, all motorway 
segments will have a median barrier.  

Dual, single, 
legacy 

Access Business Access density to business premises (number of 
business accesses per kilometre) 

Dual, single, 
legacy 

Access Commercial  Access density to commercial premises (number of 
commercial accesses per kilometre) 

Dual, single, 
legacy 

Access Residential  Access density to residential premises (number of 
residential accesses per kilometre) 

Single 2+1 or 1+1 flag Flags segments which are one of these two road types 

 

The variables that were added to each model were selected through a stepwise variable 
selection process, according to how significant they were (those with the best p-values were 
added first). Change in Akaike’s Information Criterion (AIC) and Bayesian Information 

 

4 Note, there were no major junctions recorded on legacy roads so this variable was excluded from the 

modelling. 

5 This includes major roundabouts and slip roads. 
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Criterion (BIC)6 values were also taken into account. At each step of the process, the 
following method was applied: 

1. n models were created, where n was the number of variables left under 
consideration. Each model added one variable to those selected during the previous 
iteration.  

2. The minimum p-value of these new variables in their models was determined, if the 
minimum value was greater 0.05 (non-significant) the process terminated.  

3. The AIC and BIC values of the models with this new variable were compared to those 
of the model without this new variable. The variable was added to the model only if 
both AIC and BIC values decreased. 

4. The process then updated list of selected variables and variables under consideration 
and looped back to step 1. 

Throughout the process, variables with strong correlations between them were not included 
together as this would lead to multicollinearity7 issues. 

The output from the final model is a list of coefficients which describes how each variable 
influences collision risk (Table 9 summarises these relationships). 

 

Table 9: Interpretation of coefficient values on collision risk 

Coefficient (b)  

b > 1 For increasing values of the variable, the number of collisions will 
increase, at an increasing rate 

b = 1 For increasing values of the variable, the number of collisions will 
increase, at a constant (or linear) rate 

0 < b < 1 For increasing values of the variable, the number of collisions will 
increase, at a decreasing rate 

 

6 Both AIC and BIC are used to assess the goodness of fit of a model and compare between models to see 

which one best explains the data. The BIC also penalises models based on the number of parameters in the 

model, favouring ‘simpler’ models with fewer variables to ensure the model is not overfitted to the data. 

Overfitting can mean the model is only relevant to the data set it was built using, and irrelevant to any other 

data sets; the intention is to use the model outputs in the tool, so it is important this is not the case. As a 

result, a decision was made to use both the AIC and BIC in model selection, even though this may result in a 

more conservative model.  

7 Multicollinearity is an issue in statistically models where multiple explanatory variables are highly correlated 

to each other. This results in less reliable statistical inferences as the modelling will be unable to assign 

variance clearly to specific variables. All pairs of variables included in the model were therefore tested for 

correlation and for those where this was identified as ‘strong’ (Pearson’s correlation coefficient >0.5), only one 

of the variables was added during the modelling (assuming it met the criteria of significance and reduction in 

AIC/BIC). 
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Coefficient (b)  

b = 0 There will be no change in the number of collisions with increasing 
values of the variable 

b < 0 For increasing values of the variable, the number of collisions will 
decrease 

 

For each of the final models selected, a comparison to the base model on the following 
measures is presented: AIC, BIC and McFadden’s R-Squared. For AIC and BIC, a smaller 
number represents a better model. For McFadden’s R-squared value, higher numbers are 
better, and values between 0.2 and 0.4 represents a very good model fit (Hensher & 
Stopher, 1979). 

The final step of the modelling process was to assess the predictive performance of the 
model. This is achieved by using K-fold cross-validation. A K value of 10 was used as this is 
standard practise. In K-fold cross validation the data is split into K subsets of equal size. This 
allows for 10 combinations of training and tests sets such that 9 subsets are combined to 
form a training set and one subset is used as the test set. The model is trained on the 
training set, then the predictive performance of the model is measured using the test set 
and some selected metrics. The metrics used were the Mean Absolute Deviance (MAD)8 and 
the Mean Squared Prediction Error (MSPE)9. The average values for these metrics across the 
ten test sets provide an estimate of the predictive performance of the model.  

During the process of developing the models, some improvements to the data were made. 
These are documented in Appendix B. 

The following sections present the results of this modelling exercise for the main response 
variable of interest: all collisions (including material damage only). Additional modelling for 
collisions involved casualties who were killed or seriously injured (KSI) only are included in 
Appendix C. 

2.3.1 Motorway model 

2.3.1.1 Base model 

The base model included AADT and segment length variables both in power form.  

 

8 MAD is estimated by subtracting the actual collision values from the predicted values, converting it to an 

absolute error and calculating the average. While this metric is the easiest to explain, the main drawback of 

this measure is that it averages out the error across the entire dataset which does not necessarily present a 

true picture of the prediction error across the full range of values. As a result, MAD is less accurate for outliers 

but better for ‘normal’ observations. 

9 The main advantage of the MPSE is that it is more sensitive to large outliers compared to MAD; however, it 

might be less accurate for ‘normal’ observations. 
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The likelihood ratio test result indicated that the zero-inflated negative binomial model had 
significantly better goodness-of-fit than the equivalent Poisson model with p<0.01. 

2.3.1.2 Full model 

Over the course of the stepwise variable selection process the variables shown in Table 10 
were selected for inclusion based on their p-values, AIC and BIC values. 

 

Table 10: Variables included in motorway model for all collisions (variables of interest in 
black, others also included in the model in grey) 

Model stage Variable Coefficient p-value 

Count model 

Intercept -9.192 p<0.001 

Log(segment length) 0.765 p<0.001 

Log(AADT) 1.157 p<0.001 

Gradient 0.176 p<0.001 

HGV % 1.804 p<0.001 

Radius -0.187 0.004 

Log(theta) 1.647 p<0.001 

Zero-inflation model 
Intercept 44.478 0.008 

Log(AADT) -5.468 0.005 

 

The direction of the coefficients (positive or negative) is as expected: 

• As the segment length or AADT increase, the positive coefficients indicate that 
collision risk increases.  

o The segment length coefficient is less than 1 which indicates that if the 
segment length is doubled, the collision risk is increased, but not as much as 
doubled.   

o The AADT coefficient is slightly greater than 1, suggesting that as the flow 
increases, the collision risk increases at an increasing rate. This result has 
been found in previous studies for motorways (e.g. the M25 Controlled 
Motorways safety benefit report for the GB government found an exponent 
of 1.663).   

• Increases in gradient, and increases in the % of vehicles which are HGVs, both 
increase collision risk, possibly due to increased speed differentials and braking 
performance between vehicle types. 

• As the radius increases (i.e. the road becomes less bendy), the collision risk 
decreases.  
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The goodness of fit measures for this final model are compared to the base mode in Table 
11. AIC and BIC have fallen, and the R-squared value has increased, suggesting that the final 
model is better than the base model for predicting collision risk. However, the final 
McFadden’s R-squared value is less than 0.2, suggesting this model could be improved. 

 

Table 11: Goodness of fit measures for the motorway model for all collisions 

 Base model Final model 

AIC  2,343 2,301 

BIC 2,367 2,336 

McFadden R-Squared 0.16 0.17 

2.3.1.3 Model prediction accuracy 

The model predictive performance was assessed using 10-fold cross validation. The model 
prediction accuracy is assessed through a comparison of the actual collision numbers to 
those predicted by the model (Figure 4Figure ) and two evaluation metrics: the Mean 
Absolute Deviance (MAD) and Mean Squared Prediction Error (MSPE). These values are 
calculated for all ten of the samples and the mean value is presented in Table 12; lower 
error values indicate better model fit.   

 

 

Figure 4: Assessment of model predictions against actual collision numbers for the 
motorway all collisions model 
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Table 12: Prediction accuracy for the motorway model for all collisions 

 Final model 

Mean (MAD) 5.7 

Sqrt(mean (MSPE)) 10.8 

 

The results indicate that although there is some under and over predictions (results lie 
below and above the line), the predictions are relatively close to the line. On average, the 
difference in collisions between the actual and predicted for each segment is around 5 to 11 
collisions.   

2.3.2 Dual carriageway model 

2.3.2.1 Base model 

The base model included AADT and segment length variables, both in power form.  

The likelihood ratio test result indicated that the zero inflated negative binomial model had 
significantly better goodness-of-fit than the equivalent Poisson model with p<0.01. 

2.3.2.2 Full model 

Over the course of the stepwise variable selection process the variables shown in Table 13  
were selected for inclusion based on their p-values, AIC and BIC values. 

Table 13: Variables included in dual carriageway model for all collisions (variables of 
interest in black, others also included in the model in grey) 

Model stage Variable Coefficient p-value 

Count model 

Intercept -6.872 p<0.001 

Log(segment length) 0.597 p<0.001 

Log(AADT) 1.144 p<0.001 

Median Barrier % -1.020 p<0.001 

Radius -0.697 p<0.001 

Major Junctions -0.118 p<0.001 

Access Commercial 0.019 0.003 

Log(theta) 0.838 p<0.001 

Zero inflated model 
Intercept 6.118 N/A 

Log(AADT) -1.749 0.79 (ns) 

 

Except for major junctions, the direction of the coefficients (positive or negative) is as 
expected: 
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• As the segment length or AADT increase, the positive coefficients indicate that 
collision risk increases.  

o The segment length coefficient is around 0.6 so as the length is doubled, the 
increase in collisions is less than double.  

o The magnitude of the AADT variable is similar to that seen for motorways 
(Table 10) and comparable to other studies.  

• A greater proportion of median barriers decreases the risk on a segment. Whilst 
presence of a barrier may not in fact alter the number of collisions, barriers are 
known to reduce the collision severity, primarily by reducing head on collisions. 

• As the radius increases (i.e. the road becomes less bendy), the collision risk 
decreases.  

• As the density of major junctions (slip roads) increases, collision risk decreases. This 
result is counterintuitive since junctions are known to increase collisions. However, 
in the absence of a speed variable in the model (see Appendix A for the reasons for 
this), this may be acting as a proxy for the lower speeds typically observed around 
junctions.   

• Unlike for junctions, as the density of commercial access points increase, collision 
risk increases which aligns with expectations for this variable.  

The goodness of fit measures for this final model are compared to the base mode in Table 
14. AIC and BIC have fallen, and the R-squared value has increased, suggesting that the final 
model is better than the base model for predicting collision risk. However, the final 
McFadden’s R-squared value is quite a bit less than 0.2, suggesting this model is not 
particularly strong. 

 

Table 14: Goodness of fit measures for the dual carriageway model for all collisions 

 Base model Final model 

AIC  1,520 1,398 

BIC 1,539 1,430 

McFadden R-Squared 0.05 0.13 

2.3.2.3 Model prediction accuracy 

The model predictive performance was assessed through a comparison of the actual 
collision numbers to those predicted by the model (Figure 5Figure ) and two evaluation 
metrics: MAD and MSPE (Table 15).  
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Figure 5: Assessment of model predictions against actual collision numbers for the dual 
carriageway all collisions model 

 

Table 15: Prediction accuracy for the dual carriageway model for all collisions 

 Final model 

Mean (MAD) 12.7 

Sqrt(mean (MSPE)) 22.7 

 

The results indicate that there is some under and over prediction (results lie below and 
above the line). On average, the difference in collisions between the actual and predicted 
for each segment is around 13 to 23 collisions, which is higher than for the motorways 
model and aligns to the lower goodness of fit value for this model.  

2.3.3 Single carriageway model 

2.3.3.1 Base model 

The base model included AADT and segment length variables, both in power form.  

The likelihood ratio test result indicated that the zero-inflated negative binomial model had 
significantly better goodness-of-fit than the equivalent Poisson model with p<0.01.  

2.3.3.2 Full model 

Over the course of the stepwise variable selection process the variables shown in Table 16 
were selected for inclusion based on their p-values, AIC and BIC values. 
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Table 16: Variables included in single carriageway model for all collisions (variables of 
interest in black, others also included in the model in grey) 

Model stage Variable Coefficient p-value 

Count model 

Intercept -5.888 p<0.001 

Log(segment length) 0.841 p<0.001 

Log(AADT) 0.877 p<0.001 

Minor Junctions 0.132 p<0.001 

Access Commercial 0.015 p<0.001 

Gradient 0.169 p<0.001 

Radius -0.073 p<0.001 

CSC % -0.186 p<0.001 

Log(theta) 0.777 p<0.001 

Zero inflated model 
Intercept 1.782 0.983 (ns) 

Log(AADT) -1.496 0.885 (ns) 

 

The direction of the coefficients (positive or negative) is as expected: 

• As the segment length or AADT increase, the positive coefficients indicate that 
collision risk increases.  

o The segment length coefficient is similar in magnitude to the motorway 
model (Table 10). This coefficient is reasonably close to 1 which indicates that 
as the segment length is doubled, the collision risk is almost doubled collision 
risk. 

o Unlike for the motorway and dual carriageway models, the magnitude of the 
AADT coefficient is less than 1 for single carriageways. Values below one are 
not uncommon in these studies.  

• As the density of the minor junctions (T-junctions, X junctions and roundabouts) 
increases, the collision risk increases. The same is true for access to commercial 
premises, although the magnitude of this effect is smaller than for minor junctions.  

• The characteristics of the road segments influence collision risk:  

o As the gradient increases, the collision risk increases (with a similar 
coefficient magnitude to the motorway model - Table 10).  

o As the radius increases (i.e. the road becomes less bendy), the collision risk 
decreases. The magnitude of this coefficient is smaller than for motorways 
and dual carriageways but, as outlined in Section 2.2.1, the calculations for 
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this variable are slightly different for single and legacy roads so cannot be 
directly compared.  

• As the percentage of the segment where the CSC (skid resistance) values are over 
the threshold increases (i.e. more of the road meets the minimum criteria for skid 
resistance on this road type), collision risk decreases.  

The goodness of fit measures for this final model are compared to the base mode in Table 
17. AIC and BIC have fallen, and the R-squared value has increased, suggesting that the final 
model is better than the base model for predicting collision risk. However, the final 
McFadden’s R-squared value is less than 0.2, suggesting this model could be improved. 

 

Table 17: Goodness of fit measures for the single carriageway model for all collisions 

 Base model Final model 

AIC  12,932 11,720 

BIC 12,966 11,783 

McFadden R-Squared 0.07 0.16 

 

2.3.3.3 Model prediction accuracy 

The model predictive performance was assessed through a comparison of the actual 
collision numbers to those predicted by the model (Figure 6Figure  and Figure 7 with the 
three outliers with very large predictions removed) and two evaluation metrics: MAD and 
MSPE (Table 18). 
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Figure 6: Assessment of model predictions against actual collision numbers for the single 
carriageway all collisions model 

 

 

Figure 7: Assessment of model predictions against actual collision numbers for the single 
carriageway all collisions model (outliers removed) 
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Table 18: Prediction accuracy for the single carriageway model for all collisions 

 Final model 

Mean (MAD) 6.7 

Sqrt(mean (MSPE)) 58.0 

 

The results indicate that there are three significant outlying predictions (shown in Figure 6). 
Further investigation of these segments (Figure 8) identifies all three are located in the 
middle of a small town (Longford) on the high street with shops, restaurants and other 
commercial buildings being present. There are multiple surrounding car parks plus a college 
and a cathedral less than 200m from the centre. The area is also a junction for many trunk 
roads; the N5, N63 and N4 join in the centre of the town. As a result, the features of these 
sections which make the model predictions high are: 

• High minor junction density 

• High commercial access density 

• Short segment length 

• Low minimum radius (bendy sections).  

 

 

Figure 8: Single carriageway model segments with very high collision predictions[Map 
sourced from Google (2023a)] 

 

If these three results are excluded (Figure 7), the fit of the model appears to be much 
better, although, as with the other models, there is some under and over prediction (results 
lie below and above the line).  

On average, the mean absolute deviance (MAD) is around 6 collisions, which is comparable 
to the figure for the motorways model and lower (better) than for dual carriageways. As 
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outlined earlier, the MPSE figure is more sensitive to outliers than the MAD and hence this 
result is substantially bigger (worse) than for the motorway and dual models.  

2.3.4 Legacy road model 

2.3.4.1 Base model 

The base model included AADT and segment length variables, both in power form.  

The likelihood ratio test result indicated that the zero-inflated negative binomial model had 
significantly better goodness-of-fit than the equivalent Poisson model with p<0.01.  

2.3.4.2 Full model 

Over the course of the stepwise variable selection process the variables shown in Table 19 
were selected for inclusion based on their p-values, AIC and BIC values. 

 

Table 19: Variables included in legacy roads model for all collisions (variables of interest in 
black, others also included in the model in grey) 

 Variable Coefficient p-value 

Count model 

Intercept -3.767 p<0.001 

Log(segment length) 0.970 p<0.001 

Log(AADT) 0.680 p<0.001 

Minor Junctions 0.081 p<0.001 

Access Commercial 0.020 p<0.001 

CSC % -0.298 p<0.001 

Radius -0.052 p<0.001 

Gradient 0.054 0.003 

Log(theta) 1.043 p<0.001 

Zero inflated model 
Intercept -5.738 1.000 (ns) 

Log(AADT) -2.148 0.999 (ns) 

 

The direction of these coefficients (positive or negative) is as expected: 

• As the segment length or AADT increase, the positive coefficients indicate that 
collision risk increases.  

o The segment length coefficient is very close to 1 which indicates that as the 
segment length is doubled, the collision risk is almost doubled. 

o As with single carriageways (Table 16), the coefficient for AADT is below 1, 

meaning a doubling of flow will not result in a doubling of collision risk.  
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• As the density of minor junctions (T-junctions, X junctions and roundabouts) and 
commercial accesses increase, the collision risk increases. The magnitude of the 
commercial access effect is similar to single carriageways (Table 16) but the minor 
junction effect is smaller.  

• As the percentage of the segment where the CSC (skid resistance) values are over 
the threshold increases (i.e. more of the road meets the minimum criteria for skid 
resistance on this road type), collision risk decreases. This is a larger effect than that 
observed for single carriageways (Table 16). 

• As with all other road types, the characteristics of the road segments influence 
collision risk:  

o As the gradient increases, the collision risk increases (although the coefficient 
is smaller than for motorways (Table 10) and single carriageways (Table 16).  

o As the radius increases (i.e. the road becomes less bendy), the collision risk 
decreases. The magnitude of this coefficient is very similar to single 
carriageways (Table 16). 

The goodness of fit measures for this final model are compared to the base mode in Table 
20. AIC and BIC have fallen, and the R-squared value has increased, suggesting that the final 
model is better than the base model for predicting collision risk. However, the final 
McFadden’s R-squared value is less than 0.2, suggesting this model could be improved. 

 

Table 20: Goodness of fit measures for the legacy roads model for all collisions 

 Base model Final model 

AIC  8,404 7,811 

BIC 8,436 7,871 

McFadden R-Squared 0.11 0.17 

2.3.4.3 Model prediction accuracy 

The model predictive performance was assessed through a comparison of the actual 
collision numbers to those predicted by the model (Figure 9 and Figure 10 with the two 
outliers with very large predictions removed) and two evaluation metrics: MAD and MSPE 
(Table 21). 
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Figure 9: Assessment of model predictions against actual collision numbers for the legacy 
roads all collisions model 

 

 

Figure 10: Assessment of model predictions against actual collision numbers for the legacy 
carriageway all collisions model (outliers removed) 
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Table 21: Prediction accuracy for the legacy roads model for all collisions 

 Final model 

Mean (MAD) 5.3 

Sqrt(mean (MSPE)) 86.0 

 

The results indicate that there are two substantial outlying predictions (shown in Figure 
9Figure ). Further investigation of these segments (Figure 11) shows for the segment with 
the prediction of over 3,500 collisions (near the town of Boyle); the following characteristics 
make this segment high risk: 

• High gradient 

• Low minimum radius (bendy section) 

• Minimum CSC % (0%, because all the values on this segment are below the 
threshold) 

• High minor junction density 

• High commercial access density (located in the centre of a village with many 
surrounding businesses and shops) 

• Short segment length 

For the other segment with 500+ collisions predicted (near the town of Listowel), the last 
three bullet points above also apply.  

 

Segment with over 3,500 predicted collisions

 

Segment with over 500 predicted collisions

 

Figure 11: Legacy carriageway model segment with very high collision predictions [Maps 
source from Google (2023b) and (2023c)] 
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If these two results are excluded (Figure 10), the fit of the model appears to be much better, 
although, as with the other models, there is some under and over prediction (results lie 
below and above the line).  

On average, the mean absolute deviance (MAD) is around 5 collisions, which is comparable 
to the figure for the motorways and single carriageway models and lower (better) than for 
dual carriageways. As outlined earlier, the MPSE figure is more sensitive to outliers than the 
MAD and hence this result is substantially bigger (worse) than for the other models.  

2.4 Model limitations and future improvements to the models 

As outlined in Appendix B, several data improvements were made when developing these 
models. However, there are also a number of acknowledged limitations of the modelling 
and subsequent improvements which should be considered for future model improvements: 

6. One of the largest limitations of the models developed is that some key variables are 
known to be missing from the variables considered for inclusion in Table 8. One 
example of this is vehicle speed (Appendix A details why this could not be included).  

The absence of variables which are known to influence collision risk means the 
model may be ‘underspecified’10, which can lead to biased coefficients and 
predictions. As a result, the coefficients presented in this report should be treated as 
indicative and the models should be updated as new data sources are available.  

7. It is recommended that TII consider how suitable speed data might be collected; as a 
minimum this should include mean and 85th percentile speeds to enable the range of 
operating speeds to be understood.  

8. Additional variables which could be considered for future modelling if suitable data 
could be collected include: 

a. Road user flow data by road user type (e.g. motorcycles, pedestrians, pedal 
cycles) – HGV percentage was included as a variable to measure the 
prevalence of these vehicle types but understanding the presence of 
vulnerable road users would be a useful addition to the explanation of 
collision risk, in particular for KSIs. 

b. Presence of roadside and carriageway features including rumble strips, street 
lighting, pedestrian crossing facilities and cycle facilities. 

9. More detailed information on junction types, including whether the junction is 
signalised or not, the number of turning movements, the number of arms and the 
flows on each of these would enable separate junction models to be developed.  

10. Since the conditions on each carriageway can differ within a segment the modelling 
presented here is limited because carriageways had to be combined. If the collision 

 

10 This can result in a model with coefficients which are unstable (i.e. change substantially as additional 

variables are added to the model) and wider than necessary confidence intervals around these coefficients. 
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data could be reliably assigned to a carriageway, this would enable separate 
segmentations per carriageway and more reliable models to be developed.  

11. Accurate assignment of collisions to specific roads would also enable better 
assignment of collisions and junctions to modelling segments, eliminating some of 
the challenges with assignment where segments cross over (e.g. where one road 
crosses over the top of another). At present, there are some locations where 
collisions may be incorrectly assigned to the segment because it is not possible to 
determine which road the collision occurred on.  
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3 Task 5 – stakeholder engagement and tool planning 

This section presents a summary of the results of two tasks led by Arup: 

1. An online survey with Road Safety Engineers that was prepared and utilised to 
gather opinions and views on a Transport Infrastructure Ireland (TII) Collision 
Reduction Calculator (Section 3.1). 

2. Workshops held with Local and Regional Engineers which facilitated a more detailed 
discussion on what is needed from the tool and how this might be used by end users 
(Section 3.2). 

The implications for the design of the tool are summarised in Section 3.3. 

3.1 Online survey results 

An online survey was prepared by Arup and TRL and circulated to those taking part in the 
workshops. The objective of the on-line survey was to gain an understanding of the 
following:  

• Current processes for assessing schemes, 

• How Collision Modification Factors (CMFs) are being utilised, 

• The typical countermeasures used, 

• How is the effectiveness of a proposed scheme used. 

There were 14 responses received to the on-line survey, full results of the survey are 
presented in Appendix D. The results showed that: 

• There is a varied approach to assessing road safety improvement schemes including 
use of the collision statistics, local knowledge, site visits, Google Street View, 
gathering of Road Safety Audit (RSA) data (if it can be obtained – GDPR is an issue), 
traffic data (from TII sites or temporary counts), drones/photos/camera surveys, 
information from local Gardai and/or residents.  

• 11 out of 14 respondents said they did use CMFs to assess road safety 
improvements. The majority of these were sourced from TII and CMF Clearinghouse.  

• The most common countermeasures were reported to be: 

o Signing and Lining (12 responses) 

o Improved visibility (10 responses) 

o Active Travel Measures (10 responses) 

o Traffic Calming (9 responses) 

• The effectiveness (safety benefits) of a scheme is assessed through calculations of 
the expected reduction in collisions, First Year Rate of Return (FYRR) calculations, 
before and after analysis (collisions or speed) or changes in local perceptions.  
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3.2 Workshops with TII  

A series of workshops were held with TII, Regional Road Safety Engineers (RRSE) from TII 
and National Roads Design Offices (NRDOs).   

Building on the on-line survey, the workshops were intended to: 

• Gather input from those likely to use the tool, the format, inputs, outputs, etc. to 
develop a useful tool with a stronger end user experience. 

• Allow the contributors to provide suggestions for additional features and how the 
tool would work. 

There were nine attendees across the two workshops. The key findings from the workshops 
can be summarised as follows: 

1. Combining countermeasures is important. When combining CMFs, simplicity is 
important as the output from the tool needs to be easy for the user to understand. 
Upper and lower bounds on the CMFs could be useful to understand the range of 
expected effectiveness of the interventions, but it should be clear which figure to 
use for appraisal purposes. 

Most schemes have multiple interventions, so it is important that the tool enables 
this to be captured by the inputs.  

2. First Year Rate of Return (FYRR) is a useful metric for TII. If this calculation can 
easily be added to the tool as an output, this would be of great benefit to the end 
users of the tool.  

3. The audience for the tool have a technical background, although road safety may 
not their field of expertise. The tool should include notes, clear signposting and 
drop-down menus are required. 

4. CMFs should be referred to as a “Collision Reduction %”. The term ‘CMF’ is not 
generally well liked or understood by the users of the tool; a ‘collision reduction %’ is 
the most useful output. Understanding how the countermeasure leads to a 
reduction in the severity of collisions (e.g. fewer KSIs and more damage only) in the 
tool would also be useful.  

5. A feedback loop with engineers is needed during tool development. Those involved 
in the workshops expressed a view that they would like to be able to input during 
development of the tool, particularly on which countermeasures are included.   

6. A variety of countermeasures that were suggested for inclusion including VRU 
crossings, roundabouts, urban landscaping, lane narrowing, traffic calming 
(channelised islands), school zones - lining and signing, rural bus stop improvements 
and junction visibility improvements.  

7. The tool would be useful more widely on the Irish road network, not just on TII 
managed roads. The implications of this should be considered during tool 
development and any caveats on its use in this situation made clear in the tool. If the 
tool is not suitable for use on other road types, this needs to be stated in the tool 
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guidance. Users are likely to be regional inspection engineers, area engineers and 
others. 

It would be useful to consider if an option to input your own CMF or add 
countermeasures later could be included to future proof the tool.  

8. Previous work carried out in 2020 on CMF research and guidance for application 
should be reviewed. This project should build on this guidance as this work reviewed 
Clearinghouse CMFs11 and their application to Ireland.  

9. A suggestion was made to utilise only the top (4 and 5 star) CMFs from 
Clearinghouse and average these for use in the tool.  

3.3 Tool design 

From this engagement, several key decisions were made: 

• It was confirmed that the tool would be developed in Excel with relatively simple 
functionality for the user (and no macros). 

• The output would include the FYRR and be easy to save and store (via a print out) for 
future reference to support the business case for intervention. 

• The tool would be available for download on the TII website and would include 
guidance on its use within the tool itself, rather than requiring separate 
documentation. 

• On the main calculations page, the term ‘collision reduction percentage’ would be 
used in the tool, rather than ‘CMF’. The term ‘CMF’ will be used on a separate tab 
with more detailed calculations only. 

• A central (average) estimate for the collision reductions would be presented on the 
main tab. Supporting pessimistic and optimistic bound would be presented on the 
more detailed calculations tab for users who want this level of detail.   

• Following the workshop, the suggestion to only use 4- and 5-star CMFs from 
Clearinghouse was discussed further with TII and it was decided this would severely 
limit the capabilities of the tool.  A decision was made to use 3-, 4- and 5-star CMFs. 

• A decision was made to refer to the tool as the ‘Collision Reduction Calculator’ so 
users are clear on what the tool can be used to do. 

 

  

 

11 Clearinghouse (https://www.cmfclearinghouse.org/) is a repository for CMFs from internationally published 

studies. It provides a searchable database of CMFs along with guidance and resources on using CMFs in road 

safety practice. Other databases (e.g. the PRACT repository) also exist but Clearinghouse is the most up to date 

source for these data.  

https://www.cmfclearinghouse.org/
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4 Task 6 – Collision Reduction Calculator development 

This section gives a high-level overview of the Collision Reduction Calculator functionality 
(Section 4.1), summarises the Irish countermeasures and CMFs included in the calculator 
from the modelling (Section 4.2) and presents some suggestions for future improvements to 
the tool (Section 4.3). 

The calculator is available to download from the TII Publications website: 
https://www.tiipublications.ie/. 

4.1 Overview of the Collision Reduction Calculator 

Following the survey and workshop a full scope and process flow was developed and agreed 
with TII. Figure 12 presents a high-level summary of the Collision Reduction Calculator 
process flow. Full details of the user process flow and examples of the calculations are 
presented in Appendix E. 

 

 

Figure 12: Summary of the process flow for the Collision Reduction Calculator 

 

The inputs to the calculator are the CMFs from the Irish APMs (outlined in Section 4.2) and 
CMFs from the Clearinghouse website. Filters were applied to the CMFs from Clearinghouse 
to utilise only the highest quality studies (see Appendix E.1 for more details). 

The user selects the road type of interest: motorway, dual carriageway, single carriageway 
or legacy road, and this further filters the countermeasures available for selection to only 
those which are applicable to the road type of interest (the definitions of each road type 
used in Clearinghouse are summarised in Appendix E.2).  

The user selects countermeasures of their choice from the list, or inputs their own, and the 
associated collision changes by severity are presented and combined (where necessary, 

https://www.tiipublications.ie/
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using standard methods from the literature12) to calculate predicted changes in the collision 
numbers.  

The user inputs information on the historical collisions at the site and the estimated cost of 
these countermeasures, and the First Year Rate of Return (FYRR) is presented as a 
percentage as the key output. A screenshot of the results section of the main calculator 
page of the tool is given in Figure 13. 

 

 

Figure 13: Example screenshot of results section of the tool with sample data 

4.2 Irish CMFs included in the tool 

Based on the output of the modelling (Section 2.3), Table 22 to Table 25 summarise the Irish 
CMFs included in the tool. These variables are included as countermeasures for selection in 
the calculator as described in the tables. 

 

Table 22: Irish CMFs included in the calculator from the Motorway model 

Variable CMF Interpretation of CMF Associated countermeasure 
in the calculator 

Gradient 
𝑒−0.176

= 0.839 

Decreasing the absolute 
maximum gradient by 1 degree 
decreases the number of 
collisions by 16%. 

Decrease in absolute 
maximum gradient by 
[1/2/3/4/5] degrees  

HGV % 
𝑒−0.01804

= 0.982 

Decreasing the proportion of 
HGVs by 1% decreases the 
number of collisions by 2%. 

Decrease in proportion of 
HGVs by [1/2/3/4/5]% 

Radius 
𝑒−0.187

= 0.829 

Increasing the minimum radius by 
1000m decreases the number of 
collisions by 17%. 

Increase in minimum radius 
by [1000/2000/3000]m 

 

12 The three methods for combining the effect of countermeasures used in the tool are the ‘multiplicative’ 

(Independent effects) method, the ‘dominant common residuals (DCR)’ method and the ‘minimum CMF’ 

(dominant effects) method. See ‘An exploratory analysis of models for estimating the combined effects of road 

safety measures’ (Elvik, 2009) for a clear and detailed description of these methods and when they are most 

appropriate. 



Collision prediction model - Phase 2   

 

 

Final - version 2.0 35 PPR2031 

 

Table 23: Irish CMFs included in the calculator from the Dual Carriageway model (note, 
major junctions excluded from this table as this coefficient was not in the expected 

direction – see Section 2.3.2.2 for a full discussion on this) 

Variable CMF Interpretation of CMF Associated countermeasure 
in the calculator 

Median 
barrier 

𝑒−0.0102

= 0.990 

Increasing the median barrier 
proportion by 1% decreases the 
number of collisions by 1%. 

Increase median barrier 
proportion by 
[1/2/3/4/5/6/7/8/9/10]% 

Radius 
𝑒−0.697

= 0.498 

Increasing the minimum radius 
by 1000m decreases the 
number of collisions by 50%. 

Increase in minimum radius 
by [1000/2000/3000]m 

Commercial 
access 

𝑒−0.019

= 0.981 

Decreasing the number of 
commercial access points by 1 
per km decreases the collision 
number by 2%. 

Decrease number of 
commercial accesses per km 
by [1/2/3] 

 

Table 24: Irish CMFs included in the calculator from the Single Carriageway model 

Variable CMF Interpretation of CMF Associated countermeasure 
in the calculator 

Gradient 
𝑒−0.169

= 0.845 

Decreasing the absolute 
maximum gradient by 1 degree 
decreases the number of 
collisions by 16%.  

Decrease in absolute 
maximum gradient by 
[1/2/3/4/5] degrees 

Minor 
junctions 

𝑒−0.132

= 0.876 

Decreasing the number of 
minor junctions per km by 1 
decreases the collision number 
by 12%. 

Decrease number of minor 
junctions per km by [1/2/3] 

Radius 
𝑒−0.073

= 0.930 

Increasing the minimum radius 
by 1000m decreases the 
collision number by 7%. 

Increase in minimum radius 
by [1000/2000/3000]m 

Commercial 
access 

𝑒−0.015

= 0.985 

Decreasing the number of 
commercial access points by 1 
per km decreases the collision 
number by 1%. 

Decrease number of 
commercial accesses per km 
by [1/2/3] 

CSC % 
(skid) 

𝑒−0.00186

= 0.998 

Increasing the proportion of 
road with CSC % above the 
threshold by 1 decreases the 
collision risk by 0.2%. 

Resurface a road of which 
[25/50/75/100]% was below 
the skid resistance threshold 
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Table 25: Irish CMFs included in the calculator from the Legacy road model 

Variable CMF Interpretation of CMF Associated countermeasure 
in the calculator 

Gradient 
𝑒−0.054

= 0.947 

Decreasing the absolute 
maximum gradient by 1 degree 
decreases the number of 
collisions by 5%.  

Decrease in absolute 
maximum gradient by 
[1/2/3/4/5] degrees 

Minor 
junctions 

𝑒−0.081

= 0.922 

Decreasing the number of 
minor junctions per km by 1 
decreases the collision number 
by 8%. 

Decrease number of minor 
junctions per km by [1/2/3] 

Radius 
𝑒−0.052

= 0.949 

Increasing the minimum radius 
by 1000m decreases the 
collision number by 5%. 

Increase in minimum radius 
by [1000/2000/3000]m 

Commercial 
access 

𝑒−0.020

= 0.980 

Decreasing the number of 
commercial access points by 1 
per km decreases the collision 
number by 2%. 

Decrease number of 
commercial accesses per km 
by [1/2/3] 

CSC % 
(skid) 

𝑒−0.00298

= 0.997 

Increasing the proportion of 
road with CSC % above the 
threshold by 1 decreases the 
collision risk by 0.3%. 

Resurface a road of which 
[25/50/75/100]% was below 
the skid resistance threshold 

 

4.3 Future potential improvements to the tool 

The tool could be developed further in the future by: 

• Breaking down countermeasure effectiveness by different collision types. This 
relies on more data on collision types being available. In the first instance, this could 
utilise the collision type information (where it is available) in the Clearinghouse data. 

• Allowing the user to specify the amount of overlap between countermeasures to 
give more accurate combined reductions. At present the tool presents an overall 
predicted collision reduction on the main calculator page, with an optimistic and 
pessimistic bound on the ‘Calculations with CMFs’ page. If the user could input 
knowledge of the overlap between countermeasures, the tool could give a more 
accurate estimate (for example, by picking the lower bound reduction if overlap was 
known to be strong). 

• Links to other data sources (for example, data repositories similar to Clearinghouse) 
with more countermeasures. If the accident prediction models are improved, further 
CMFs could be added from these too. 
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• Countermeasures could be categorised in the tool by relevance or applicability to 
Irish roads. At present, general filters are applied to the CMFs from Clearinghouse to 
eliminate those that are not applicable (for example removing CMFs that apply to 
roads with a larger number of lanes than seen on TII roads). An individual 
assessment of countermeasures or countermeasure groups could highlight those 
that are particularly useful for Irish roads. 
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5 Conclusions 

Relative to other European countries, Ireland is a small country with low flows and few road 
collisions. This can present methodological challenges with using Generalised Linear 
Modelling to develop APMs. The zero-inflated models used in this project, however, have 
overcome these challenges and demonstrate that the outcomes of these models can inform 
road safety intervention. In particular, the models show that to reduce collision risk: 

• Reducing the number, or improving the safety of, minor junctions and access points 
onto the network could reduce collision risk.  

• On dual carriageways, increase the proportion of median barriers decreases the risk 
on a segment. 

• It is important to ensure the skid resistance (CSC %) meets the defined minimum 
thresholds on single and legacy roads. 

• The geometry of the road influences collision risk: gradient and radius were common 
significant predictors of collision risk across all models.  

APMs have been found to be a more cost-efficient way to carry out evaluation of safety 
interventions compared to studies of individual features or sites. This research highlighted 
limitations associated with using existing data sets collected for other purposes. Some 
improvements have been made to the TII datasets (detailed in Appendix B) but some 
challenges remain. Suggestions for future improvements to the models have been made in 
Section 2.4 and for the associated collision reduction calculator in Section 4.3. 

The calculator developed in this project can be used by regional and local road safety 
engineers to support them in identifying effective road safety interventions, understanding 
the potential collision reductions which could be achieved with these, and feed into the 
(FYRR) economic appraisal of the measures. 
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Acronyms 

AADT Annual Average Daily Traffic 

AIC Akaike’s Information Criterion 

APM Accident Prediction Model 

BIC Bayesian Information Criterion 

CMF Crash Modification Factors 

CSC Characteristic SCRIM (skid resistance) Coefficient 

FYRR First Year Rate of Return 

GIS Geographic Information System 

GLM Generalised Linear Modelling 

GPS Global Positioning System 

HGV Heavy Goods Vehicle 

KSI Killed or Seriously Injured 

MAD Mean Absolute Deviance 

MSPE Mean Squared Prediction Error 

NRDO National Roads Design Offices 

NTpM National transport model 

PCA Principal Component Analysis 

PMS Pavement Management Survey 

PRACT Predicting Road Accidents – a Transferable methodology across Europe 

RRSE Regional Road Safety Engineers 

SCRIM Sideway-force Coefficient Routine Investigation Machine (Skid resistance) 

TII Transport Ireland Infrastructure 

TRL Transport Research Laboratory 

VRS Vehicle Restraint Systems 
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Appendix A Variables not included in the models 

This appendix outlines the variables that were not possible to include in the modelling and the reasons for these.  

Models Variable Description Reason this was not used in the modelling 

All Percentage rear 
end 

Percentage of 
collisions that are 
rear-end 

The response variable in the models was number of collisions and thus it does 
not make sense that the percentage of collisions which are rear end collisions 
would be a predictor variable for this measure. 

All LV AM peak 
speed 

Modelled light 
vehicle (LV) peak 
speed in the morning 

Initial modelling carried out with the speed variables indicated that the 
coefficient for these data was negative. This was unexpected since a negative 
coefficient indicates that if speed increases, collision risk decreases; which is 
contrary to well-researched evidence from literature showing that increasing 
speeds results in an increased collision risk.  

The speed data used for the modelling was provided from the National Transport 
Model (NTpM). This is used for understanding delay and due to the way in which 
it is calculated (including being capped based on a maximum allowable speed 
function), this does not accurately represent the actual traffic speeds, and 
therefore collision risk, on a given link. 

Alternative sources of speed data were (re)considered but none of these were 
identified as a practical route to obtain the speed data needed for the modelling. 
As a result, a decision was made to develop the models without speed.  

All HV AM peak 
speed 

Modelled heavy 
vehicle (HV) peak 
speed in the morning 

All LV inter-peak 
speed 

Modelled light 
vehicle (LV) inter-
peak speed 

All HV inter-peak 
speed 

Modelled heavy 
vehicle (HV) inter-
peak speed 

All Risk rating Highest risk rating for 
the segment  

This variable could not be included in the modelling due to the large volume of 
missing data. The measurement points for this data are sparse, and with a 50m 
buffer applied to the network, many of the segments had no risk rating applied 
to them. 
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Models Variable Description Reason this was not used in the modelling 

Dual, single, 
legacy 

Median width 
and hard 
shoulder width 

Median width and 
hard shoulder width 
categorisations. 

These variables were collected manually using a visual inspection of Google Earth 
for motorways. However, due to the scale of the data collection requirements, it 
was not deemed possible to carry out the same inspection for the dual, single 
and legacy networks; as a result, these variables are not included in the models.  

Single, 
legacy 

Verge barrier % Percentage of the 
segment with a verge 
barrier on the 
nearside.  

This variable was not included in the single and legacy models as the data 
provided by TII were unreliable, and the task to collect robust data by a visual 
inspection was deemed too great. TII are currently collecting more reliable data 
but it was not available within the timeframes of this project. 

Motorway Access 
Business/ 
Commercial/ 
Residential per 
kilometre 

Access density to 
business/ 
commercial/ 
residential premises 

This variable was calculated for all road types but was not used for the motorway 
modelling as it was assumed that no accesses of these types would be directly 
onto the motorway network. 
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Appendix B Data improvements  

During the initial segmentation and modelling activities, several issues with the data were 
identified which influenced the results of the preliminary models developed. As a result, a 
series of data improvements were carried out to resolve these before the network 
segmentation and modelling were updated (the results of which are presented in Section 
2.3). This appendix summarises the data improvements made in the course of this work.  

As outlined in the interim report (Chowdhury, et al., 2022), the base map layer selected for 
the analysis was the TII GIS base layer. During the course of the modelling, some 
inaccuracies in the road type classification were identified. To rectify these, the PRIME 2 
data were used to identify any discrepancies between the two datasets, and then used to 
update the segments which were classified incorrectly.  

Using the TII GIS layer to calculate the junction counts on each segment led to substantial 
inaccuracies in this count: there were large numbers of minor junctions missing from the 
shapefile. The PRIME data was again used to improve the accuracy of these counts. Some 
manipulation was needed for this: 

• Roundabouts in the PRIME2 data often had multiple points recorded for each 
junction. To ensure these weren’t double counted, a method for combining these 
points was used.  

• Slip road counts were inconsistent: some slip roads recorded a central point to cover 
both the on and off junctions on each carriageway, others had multiple points. To 
ensure reliable junction counts for each segment, the line data from PRIME2 was 
used, converted into a centralised point and then matched the closest “main road” 
line. 

• A suitable buffer was defined to capture junctions located at the end of each 
segment. This ensured that collisions occurred on these junctions were explained by 
the junction density variables associated with that segment.  

The datasets provided by TII did not provide accurate information on median or hard 
shoulder width, or the presence of barriers. Some data is collected, and activities are 
underway to increase the collection of this information; however, this was not available 
during the timeframes of this project. As a result, some limited manual data collection was 
carried out using Google Earth imagery to supplement the motorway and dual carriageway 
datasets. Specifically, information on the following road characteristics were collected at 
1km intervals, combined with existing data where this was available, and used to estimate 
the median and hard shoulder characteristics: 

• Median width (motorways only) 

• Hard shoulder width (motorways only) 

• Median barrier presence (motorways and dual carriageways) 

• Verge barrier presence (motorways and dual carriageways) 

  



Collision prediction model - Phase 2   

 

 

Final - version 2.0 44 PPR2031 

Appendix C KSI models 

The killed and seriously injured (KSI) models presented in this appendix were created using 
the same methodology as outlined in Section 2.3, but the response variable used was KSI 
collisions only, rather than all reported collisions. Since KSI collisions are relatively 
uncommon compared to slight or damage only collisions, there are substantially more 
segments13 with zero collisions recorded. As a result, the models created are more uncertain 
than those for all collisions. This is demonstrated by the typically lower McFadden’s R-
squared values (a measure of model fit) for each road type (the exception of this is dual 
carriageways for which the KSI model appears to better fit these data).  

As with the ‘all collisions’ models, some caution should be taken when interpreting the 
results of the KSI models since it was not possible to include all the variables which are 
known to influence collision risk (e.g. speed). In addition, due to the smaller number of 
segments with non-zero collision numbers, the models are less robust: some coefficients 
(and standard errors) cannot be estimated or are very large, even using the zero-inflated 
models.  

Despite these limitations, it is interesting to compare significant variables for these models 
with those for all collisions; in many cases the variables which are significant predictors of 
KSI models are a smaller subset of those which were found as predictors for the all collisions 
models, suggesting that use of the latter models (which fit the data much better) in the 
subsequent tool development is still valid if the focus is on reducing the more severe 
collisions.  

C.1 Motorway 

The base model included AADT and segment length variables, both in power form. The 
likelihood ratio test suggests a zero-inflated Poisson model is appropriate.  

The stepwise procedure was followed for this model but the base model (which includes 
only segment length and AADT) was found to be the best fitting model – see Table 26. 

 

Table 26: Variables included in motorway model for KSI collisions (variables of interest in 
black, others also included in the model in grey) 

 Variable Coefficient p-value 

Count model 

Intercept 7.247 p<0.001 

Log(segment length) 0.809 p<0.001 

Log(AADT) 0.601 p<0.001 

Zero inflated model 
Intercept 20.967 0.30 (ns) 

Log(AADT) -2.594 0.27 (ns) 

 

13 The segmentation used for these models was the same as that reported in the earlier sections of this report.  
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For the significant variables: 

• The segment length coefficient is very similar to the ‘all collisions’ model (0.809 
compared with 0.765).  

• The AADT variable is quite different however: 0.601 for KSI collisions (suggesting KSI 
collisions increase as AADT increases but at a decreasing rate) and 1.157 for all 
collisions (suggesting all collisions increase as AADT increases but at an increasing 
rate). 

The McFadden’s R-squared value was 0.10 suggesting this KSI model is not particularly 
strong. 

 

 

Figure 14: Assessment of model predictions against actual collision numbers for the 
motorway KSI collisions model 

 

Table 27: Prediction accuracy for the motorway model for KSI collisions 

 Final model 

Mean (MAD) 0.45 

Sqrt(mean (MSPE)) 0.62 
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C.2 Dual carriageway 

The base model included AADT and segment length variables, both in power form.  

The likelihood ratio test result indicated that the zero-inflated negative binomial model had 
significantly better goodness-of-fit than the equivalent Poisson model with p<0.01.  

Table 28 shows the model coefficients and Table 29 assesses the model fit. 

 

Table 28: Variables included in dual carriageway model for KSI collisions (variables of 
interest in black, others also included in the model in grey) 

 Variable Coefficient p-value 

Count model 

Intercept -11.608 p<0.001 

Log(segment length) 1.105 p<0.001 

Log(AADT) 1.187 p<0.001 

Minor junctions 0.075 0.03 

Median barrier % -1.392 p<0.001 

Log(theta) 6.311 0.76 (ns) 

Zero inflated model 
Intercept -11.194 0.28 (ns) 

Log(AADT) 1.007 0.31 (ns) 

 

For the significant variables: 

• The segment length coefficient is quite different to the coefficient for all collisions: 
1.105 for KSI collisions (suggesting KSI collisions increase as length increases but at 
an increasing rate) and 0.597 for all collisions (suggesting all collisions increase as 
length increases but at a decreasing rate). 

• The AADT variable is very similar to the ‘all collisions’ model (1.187 compared with 
1.144).  

• The median barrier % variable is also included in the ‘all collisions’ model (Section 
2.3.2.2) with a similar magnitude for the coefficient.  

• Minor junction density was not included in the ‘all collisions’ model, however (major 
junction density did feature), suggesting that the minor junctions might be more 
influential for KSI collision risk. 

McFadden’s R-squared for this model (0.21) is good suggesting this model performs quite 
well, and better than the ‘all collisions’ model which only scored 0.13 on this measure.  
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Table 29: Goodness of fit measures for the dual carriageway model for KSI collisions 

 Base model Final model 

AIC  307 266 

BIC 326 292 

McFadden R-Squared 0.07 0.21 

 

 

Figure 15: Assessment of model predictions against actual collision numbers for the dual 
carriageway KSI collisions model 

 

Table 30: Prediction accuracy for the dual carriageway model for KSI collisions 

 Final model 

Mean (MAD) 0.48 

Sqrt(mean (MSPE)) 0.83 

C.3 Single carriageway 

The base model included AADT and segment length variables, both in power form.  

The likelihood ratio test result indicated that the zero-inflated negative binomial model had 
significantly better goodness-of-fit than the equivalent Poisson model with p<0.01.  

Table 31 shows the model coefficients and Table 32 assesses the model fit. 

 



Collision prediction model - Phase 2   

 

 

Final - version 2.0 48 PPR2031 

Table 31: Variables included in single carriageway model for KSI collisions (variables of 
interest in black, others also included in the model in grey) 

 Variable Coefficient p-value 

Count model 

Intercept -7.758 p<0.001 

Log(segment length) 0.898 p<0.001 

Log(AADT) 0.720 p<0.001 

Minor junctions 0.080 p<0.001 

Crossfall 0.373 p<0.001 

Log(theta) 1.046 p<0.001 

Zero inflated model 
Intercept 5.012 0.98 (ns) 

Log(AADT) -1.682 0.95 (ns) 

 

For the significant variables: 

• The segment length variable is very similar to the ‘all collisions’ model (0.898 
compared with 0.841).  

• The AADT variable is very similar to the ‘all collisions’ model (0.720 compared with 
0.877).  

• The minor junction density variable is also included in the ‘all collisions’ model 
(Section 2.3.3.2) with a similar magnitude for the coefficient.  

• Crossfall (i.e. transverse fall) was not, however, included in the ‘all collision’ model 
(other physical segment characteristics including gradient and radius did feature), 
suggesting that the crossfall might be more influential for KSI collision risk. 

The McFadden’s R-squared value was 0.11 suggesting this model isn’t particularly strong. 

 

Table 32: Goodness of fit measures for the single carriageway model for KSI collisions 

 Base model Final model 

AIC  3230 3191 

BIC 3265 3237 

McFadden R-Squared 0.10 0.11 
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Figure 16: Assessment of model predictions against actual collision numbers for the single 
carriageway KSI collisions model 

 

Table 33: Prediction accuracy for the single carriageway model for KSI collisions 

 Final model 

Mean (MAD) 0.45 

Sqrt(mean (MSPE)) 0.68 

C.4 Legacy roads 

The base model included AADT and segment length variables, both in power form. The 
likelihood ratio test suggests a zero-inflated Poisson model is appropriate.  

The stepwise procedure was followed for this model but the base model (which includes 
only segment length and AADT) was found to be the best fitting model – see Table 34. 
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Table 34: Variables included in legacy road model for KSI collisions (variables of interest in 
black, others also included in the model in grey) 

 Variable Coefficient p-value 

Count model 

Intercept -5.631 p<0.001 

Log(segment length) 0.798 p<0.001 

Log(AADT) 0.541 p<0.001 

Zero inflated model 
Intercept -2.701 0.86 (ns) 

Log(AADT) -0.185 0.92 (ns) 

 

For the significant variables: 

• The segment length variable is very similar to the ‘all collisions’ model (0.798 
compared with 0.970).  

• The AADT variable is very similar to the ‘all collisions’ model (0.541 compared with 
0.680). 

The McFadden’s R-squared value was 0.09 suggesting this model is not particularly strong. 

 

 

Figure 17: Assessment of model predictions against actual collision numbers for the legacy 
road KSI collisions model 
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Table 35: Prediction accuracy for the legacy road model for KSI collisions 

 Final model 

Mean (MAD) 0.31 

Sqrt(mean (MSPE)) 0.46 
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Appendix D Online survey responses 
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Appendix E Technical Process Flow 

E.1 Filters applied before the user interacts with the tool 

Only the relevant CMFs for Irish roads are incorporated into the tool from Clearinghouse. 
The filters that determine these CMFs are as follows (with field names from the 
Clearinghouse data given in italics): 

• Star rating at least 3 (qualRating = 3,4,5) 

• CrashType = ‘All’, ‘Not specified’ or ‘Day time, Nighttime’. (this removes crash types 
that are definitely not all crashes). 

• Time of day not specific to day or night (crashTOD= ‘All’, ‘(Blank)’, ‘Not specified’). 

• Minimum number of lanes (minNumLanes) no more than 4 if one direction, and no 
more than 8 if both directions and no more than 8 if number of directions is not 
specified. The field numLanesDirection specifies the number of directions. 

E.2 Steps for the user interacting with the tool 

(Note that the tool predominantly works with ‘collision change percentages’ rather than 
‘CMFs’ when displaying collision reductions. It is more convenient to work with ‘CMFs’ when 
describing the process flow in technical detail here.) 

1. The user selects the road type that they are interested in from four options: 

a. Motorway 

b. Dual carriageway] 

c. Single Carriageway 

d. Legacy 

Note that the tool only applies to TII managed roads. 

2. The user inputs the number of collisions, by severity, at that site, and the number of 

years the data is from. The tool then calculates the yearly number of collisions of 

each severity at the site. 

3. Once the user has selected the road type this filters down the applicable CMFs 
(these are presented as ‘collision reduction %s’ not ‘CMFs’): 

a. Only the CMFs from our models that relate to that road type are shown 

b. Only the CMFs from Clearinghouse that relate to this road type are shown 

The filters applied to Clearinghouse for each road type are: 

• Motorway:   

o Minimum number of lanes not more than 4 if one direction and not more 
than 8 if both directions or if number of directions not specified 
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o Remove CMFs where the maximum speed limit (maxSpeedLimit) is less than 
100kph or where the minimum speed limit (minSpeedLimit) is greater than 
120kph 

o Road division type (roadDivType) not ‘undivided’ 

o Road type not ‘Local’ 

• Dual: 

o Minimum number of lanes not more than 3 if one direction and not more 
than 6 if both directions or if number of directions not specified 

o Remove CMFs where the maximum speed limit (maxSpeedLimit) is less than 
80kph or where the minimum speed limit (minSpeedLimit) is greater than 
120kph 

o Road division type (roadDivType) not ‘undivided’ 

o Road type not ‘Local’ 

• Single: 

o Minimum number of lanes not more than 2 if one direction and not more 
than 4 if both directions or if number of directions not specified 

o Remove CMFs where the maximum speed limit (maxSpeedLimit) is less than 
50kph or where the minimum speed limit (minSpeedLimit) is greater than 
100kph 

o Road division type (roadDivType) = ‘All’ or ‘Undivided’ or not specified 

• Legacy: 

o Minimum number of lanes not more than 2 if one direction and not more 
than 4 if both directions or if number of directions not specified 

o Remove CMFs where the maximum speed limit (maxSpeedLimit) is less than 
50kph or where the minimum speed limit (minSpeedLimit) is greater than 
100kph 

o Road division type (roadDivType) = ‘All’ or ‘Undivided’ or not specified 

4. The user then selects the countermeasures of interest and the tool gives a CMF for 
each countermeasure, by severity. When the countermeasures are from the 
Clearinghouse: 

a. If there are multiple CMFs for a chosen countermeasure, use the CMF that 
applies to ‘all’ crash severities (defined below*) and allocate this to each of 
the four severity types in the tool. If there are multiple countermeasures 
applying to ‘all’ crash severities (e.g. from different studies), average the 
CMFs to give an overall CMF for each of the severity types. 

b. If there are no CMFs for that countermeasure that apply to ‘all’ crash 
severities, for each severity take all the CMFs in the Clearinghouse database 
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that apply to that severity and average these. In this case the CMF presented 
in the tool for different severity types may not be the same. 

*The field in Clearinghouse specifying crash severity is crashSeverityKABCO. Where the 
value of this field is ‘All’, ‘Blank’, ‘Not specified’ or ‘K,A,B,C,O’ we treat the CMF as applying 
to ‘all’ crash severities. 

When the user has selected their countermeasures and the associated CMFs have been 
determined using the method in 4a or 4b above, a table will be presented as in Table 36. 

 

Table 36: Example of CMF presentation by countermeasure (A, B and C) and injury 
outcome  

Countermeasure Fatal CMF Serious 
CMF 

Non-serious 
inj. CMF 

Damage 
only CMF 

A 0.9 0.9 0.9 0.9 

B 0.8 0.8 0.8 0.75 

C 0.7    

 

In the example here, countermeasure A has a CMF of 0.9 for each of the severity types, 
countermeasure B has a CMF of 0.8 applying to all injury severities (‘KABC’), and a CMF of 
0.75 for damage only collisions, and countermeasure C has a CMF of 0.7 only applying to 
fatal collisions. 

5. For each severity (each column above) the CMFs need to be combined. To do this, 
for each column above, an upper and lower bound is calculated. Assuming all the 
CMFs are greater than zero and not more than 1: 

a. Lower bound (lower % reduction, the ‘pessimistic’ option) = dominant 
common residual (DCR) value. The DCR is calculated by multiplying the CMFs 
together and raising to the power of the numerically smallest one. Example: 
for the fatal column above the DCR is (0.7x0.8x0.9)^0.7 = 0.62 

b. Upper bound (greater % reduction, the ‘optimistic’ option) = product of the 
CMFs. 

The tool checks that product < DCR < minimum CMF in order for the DCR to be the lower 

bound. If this is not true, the minimum CMF is the lower bound. Example: For CMFs 0.5 and 

0.9, the product is 0.45, the DCR is 0.67 and the minimum is 0.5. So, we use the minimum 

CMF (0.5) here instead of the DCR. 

If any of the CMFs are bigger than 1: 

• For the pessimistic bound, take all the CMFs that are less than 1 and combine these 
as in the lower bound calculation above (which results in DCR if product < DCR < min 
CMF; min CMF otherwise). Then, multiply this result by all the CMFs that are greater 
than 1. If there are no CMFs less than 1, the pessimistic result will just be the product 
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of the CMFs bigger than 1. Example for CMFs 0.7, 0.8, 0.9, 1.1 and 1.3: Start by 
calculating the DCR as (0.7x0.8x0.9)^0.7 = 0.62. This is between the product (0.504) 
and the minimum (0.7) so we use the DCR. Then multiply 0.62 x 1.1 x 1.3 = 0.89. 

• For the optimistic bound, multiply the CMFs together to give an overall estimated 
change in collisions. Same example as above bullet: 0.7 x 0.8 x 0.9 x 1.1 x 1.3 = 0.72. 

The tool includes a warning that tells the user they are using a countermeasure that 
increases collisions if they pick one of these. 

6. The upper and lower bounds are averaged to produce an overall estimate to carry 
through the calculations (see Table 37). 

 

Table 37: Example calculation of average (overall) estimate of the CMFs 

 

7. Using the yearly number of collisions by severity, the tool calculates the estimated 
number of collisions left after applying the countermeasures, and also the estimated 
reduction in collisions. 

8. To calculate the FYRR, the user inputs the value of a collision of each severity type, 
and the cost of the countermeasures. The tool then computes the benefit (by 
multiplying the collision values by the yearly reduction in collisions) and the cost (by 
adding the costs of the individual countermeasures). The FYRR is the benefit divided 
by the cost, x 100. A FYRR > 100 indicates all the money is made back in the first 
year. 

 

The main outputs from the tool are: 

• % collision reduction, by severity 

• Absolute collision reductions yearly, by severity and overall 

• First year cost (of countermeasures) and benefit (of saving collisions) 

• FYRR (as a %) 
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