PRACTICAL USE OF NOISE REDUCING PAVEMENTS AND IMPLEMENTING RESEARCH: THE DANISH EXPERIENCE

HANS BENDTSEN
SENIOR RESEARCHER
DANISH ROAD DIRECTORATE (DRD)
MEMBER OF THE CEDR NOISE GROUP
CONTENTS

1. The noise problem
2. Noise policy and actions
3. Tendering noise reducing pavements
4. Noise generating mechanisms
5. Porous asphalt
6. Noise reducing thin layers
7. Conclusion
8. The future
ROAD NOISE PROBLEM IN EUROPE IS HUGE

Case Denmark:

- 30 % of households exposed to over 58 dB (L_{den}) Environmental Protection Agency guideline
- Urban problem
- Effects:
 - Annoys people => Real estate prices
 - Impacts sleep => Health
 - Society economy
- Large focus on noise annoyance in the population
- Often main issue in public hearing on new road and infrastructure projects
THE COST OF THE NOISE PROBLEM

Noise reduces house prices:
- 1.2 % per dB urban roads => less tax
- 1.6 % per dB highways

Increased risk of cardio-vascular diseases:
- Annually 800-2200 at hospital
- Annually 200-500 early deaths in Denmark due to noise

- Socio-economic costs of noise 0.8–1.2 billion € pr. year annually in Denmark (house and health)

- Small country 5 mill. inhabitants
THE BIGGEST PROBLEM
EXISTING ROADS AND DWELLINGS

Danish Road Directorate policy for noise management – 2009 Objectives:

- As many dwellings as possible below 58 dB (L_{den})
- To reduce the noise on as many dwellings as possible
- Ensure the best cost effectiveness in noise abatement
- Research in cost effective solutions
THE STATE ROAD NOISE ACTION PLAN

State road EU noise mapping

<table>
<thead>
<tr>
<th>L_{den}</th>
<th>< 58 dB</th>
<th>58-63 dB</th>
<th>63-68 dB</th>
<th>> 68 dB</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number dwellings</td>
<td>77.000</td>
<td>31.000</td>
<td>11.000</td>
<td>119.000</td>
<td></td>
</tr>
</tbody>
</table>

Goal to reduce the noise annoyance for as many dwellings as possible along the highway sections with the highest noise levels:

- New highways < 58 dB
- Noise barriers
- Noise reducing windows
- 55 mill. € over last 6 years
- Noise reducing pavements when pavements are renewed over 58 dB
APPLICATION OF NOISE REDUCING PAVEMENTS

- Pavement renewal on highways
- Noise reducing pavements are used:
 - Highways near residential areas noise over 58 dB
 - Highways near recreational urban areas over 58 dB
- The same for construction of new highways
- Research on integration of noise in Pavement Management Systems
SRS SYSTEM FOR TENDERING NOISE REDUCING PAVEMENTS

Noise labeling of pavements by CPX trailer noise measurements

<table>
<thead>
<tr>
<th>Noise class</th>
<th>Description</th>
<th>Noise reduction in dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRS standard</td>
<td>Good noise reduction</td>
<td>$4.0 < x < 7.0$</td>
</tr>
<tr>
<td>SRS special</td>
<td>Very good noise reduction</td>
<td>$x > 7.0$</td>
</tr>
</tbody>
</table>

Reference Nordic noise prediction method NORD2000
NCC Roads A/S - Asfaltprodukter
SMA 6P tyndlagsskærvemastiks

Produktbeskrivelse:
SMA 6P er en tyndlagsbelægning af skærvemastiks-typen med en

hvis støjreducerende effekt. SMA 6P fremstilles ved tilsætning af en

Gode resultater med SRS - støjreducerende asfalt
AB 6å Stålfalt B (50 km/t) A (80 km/t)
AB 6å Stålfalt med polymérmungeret bitumen er Munck Asfalts flagskib ind

for asfalt. Selv i små lagtykkler opnås en helt ekstraordinær støjreduktion.

SMA 6 plus 8/11 B (50 km/t) B (80 km/t)
SMA 6 plus 8/11 er et godt eksempel på en all-round belægning, som kan an
stes steder. SMA 6 plus 8/11 har en mere åben struktur end almindelig SMA.

ARKIL A/S

PANKAS AB SRS
PANgrip SRS
PANKAS SMA SRS

Asfalslidlag
• Asfaltbeton og Pulverasfalt
• Skærvemastik
• Tyndlagsbelægning
• Støjreducerende asfalt

Asfalt binde- og bærelag

Colas Danmark A/S, Fal

∑ > 25 SRS-products on market
COPENHAGEN MUNICIPALITY POLICY

- Pavement renewal process
- Roads with more than 2000 vehicles/day
- Noise reducing pavements are used
- Tendered with the SRS system
Components of noise

- Road
- Propulsion
- Tyres
Propulsion

$L_{AF\max}$ [dB] vs Speed [km/h]

- $L_{AF\max}$ [dB] increases linearly with speed.
- The graph shows a clear upward trend.
- The line represents the relationship between $L_{AF\max}$ and speed.

Key Points

- $L_{AF\max}$ [dB]
- Speed [km/h]
- Linear relationship
- Propulsion

Notes

- Additional analysis or commentary could be included here.
The graph shows the relationship between speed (km/h) and noise level (L\textsubscript{AFmax} [dB]). The graph includes a line labeled 'P_Roll' which represents the rolling noise level and a line labeled 'P_Prop' which represents the propulsive noise level.

- **P_Roll** indicates the noise level increases with speed, showing a linear relationship.
- **P_Prop** also shows an increase with speed but at a different rate compared to P_Roll.

The graph suggests that both the rolling and propulsive noise levels increase with increasing speed, which is important for understanding the noise impact at different speeds.
VIBRATION GENERATED NOISE

- The texture of the surface makes tyre vibrate
- Low frequency under 1500 Hz
AIR PUMPING NOISE

- Air is pressed out and in between the rubber blocks of the tyre
- High frequency over 1000 Hz
OPTIMISATION OF NOISE REDUCTION:

- The highest points of the surface same height. Reduce X
- Cubic aggregate and good compaction
- Distance between high points short. Reduce H
- Small aggregate size
- Holes in the surface as big as possible. Increase MPD
 Large built in air void

Vibrations generated noise

Air pumping noise

X

H

MPD
POROUS ASPHALT

- One layer
EXPERIMENT WITH SINGLE LAYER POROUS ASPHALT

<table>
<thead>
<tr>
<th>Pavement</th>
<th>Aggregate size</th>
<th>Air void</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAC8 type A</td>
<td>8 mm</td>
<td>18-22 %</td>
</tr>
<tr>
<td>PAC8 type B</td>
<td>8 mm</td>
<td>> 22 %</td>
</tr>
<tr>
<td>PAC12</td>
<td>12 mm</td>
<td>> 22 %</td>
</tr>
<tr>
<td>OGAC12</td>
<td>12 mm</td>
<td>6 %</td>
</tr>
<tr>
<td>DGAC12</td>
<td>12 mm</td>
<td>3 %</td>
</tr>
</tbody>
</table>
DGAC12 - Passenger cars

\[y = 0.40x + 75.94 \]
\[R^2 = 0.92 \]

0.4 dB/year

PAC8 Type A - Passenger cars

\[y = 0.87x + 70.45 \]
\[R^2 = 0.93 \]

0.9 dB/year
RESULT POROUS ASPHALT AVERAGE NOISE REDUCTION

<table>
<thead>
<tr>
<th>Asphalt Pavement</th>
<th>Passenger Cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Graded</td>
<td>- 1.7 dB</td>
</tr>
<tr>
<td>Porous 8 - A</td>
<td>3.3 dB</td>
</tr>
<tr>
<td>Porous 8 - B</td>
<td>3.3 dB</td>
</tr>
<tr>
<td>Porous 12</td>
<td>1.2 dB</td>
</tr>
</tbody>
</table>
NOISE REDUCING THIN LAYERS - SRS

- Open surface
- Not porous
- Small aggregate size
First Danish Test of Noise Reducing SRS Pavements on Highway

<table>
<thead>
<tr>
<th>Pavement</th>
<th>Aggregate size</th>
<th>Air void</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMA8</td>
<td>8 mm</td>
<td>12.4 %</td>
</tr>
<tr>
<td>OGAC8</td>
<td>8 mm</td>
<td>15.3 %</td>
</tr>
<tr>
<td>UTLAC8</td>
<td>8 mm</td>
<td>14 %</td>
</tr>
<tr>
<td>SMA6+</td>
<td>6+8 mm</td>
<td>3 %</td>
</tr>
<tr>
<td>SMA8+</td>
<td>6+11</td>
<td>5.7 %</td>
</tr>
<tr>
<td>DGAC11</td>
<td>11 mm</td>
<td>2.8 %</td>
</tr>
</tbody>
</table>
PASSENGER CARS

M10 110 KM/H

Passenger car

110 km/h

LAmax [dB]

- DGAC11
- OGAC8
- SMA6+
- SMA8
- SMA8+
- UTLAC8

Age [years]

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
DENSE GRADED ASPHALT CONCRETE

Passenger cars 110 km/h

0.50 dB/year
OPEN GRADED ASPHALT CONCRETE

Passenger cars 110 km/h

LAmax [dB]

Age [year]

0.70 dB/year

SPB [dB]
AVERAGE NOISE REDUCTION
FIRST GENERATION SRS

<table>
<thead>
<tr>
<th>Pavement</th>
<th>Passenger car</th>
<th>Heavy multi axle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average noise reduction [dB]</td>
<td></td>
</tr>
<tr>
<td>OGAC8</td>
<td>2.0</td>
<td>2.7</td>
</tr>
<tr>
<td>SMA6+</td>
<td>1.2</td>
<td>0.4</td>
</tr>
<tr>
<td>SMA8</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>SMA8+</td>
<td>1.7</td>
<td>1.0</td>
</tr>
<tr>
<td>UTLAC8</td>
<td>0.9</td>
<td>1.6</td>
</tr>
</tbody>
</table>
CONCLUSION

- Politics for noise reducing pavements in place and active
- Noise reducing pavements are now used on state roads and in municipalities
- Because:
 - There is a need for "low cost" noise reduction
 - Noise reducing pavement solutions are on the marked ready for use
 - Road engineers and politicians know the concept
 - The SRS system facilitates noise as a functional request in tendering process
- Cheap solution to be implemented in noise action plans
- Research ongoing for improvements
POROELASTIC PAVEMENT
FULL SCALE
TEST SECTION

Constructed in Denmark August 27th 2013